
The Software Magazine
$2.50 May 1982 Volume II, No. 12 (issN 0279-2575, USPS597-830)

On TURBODOS

A Spelling Program

Bit Manipulation In PL/l-80, Part 2

Full Screen Program Editors: PMATE

Developing Applications With dBASE II

A Detailed Description of PLAN80, Part 1

8080 Assembler Programming Tutorial: Pitfalls of Programming

TIM III
The Non-Programming Approach to Data Base Management

Data Base Management
Data management packages were created to

save time and money in the development of software
solutions to information problems. Many have been
designed to accomplish just that, although most have
only the programmer in mind. Sure they would save
time in the long run, but what of the initial investment
in time and effort required to learn the new language?
What about the non-programmers in the world who
would like an easy yet powerful applications generator?
The solution is one of the most highly acclaimed soft'
ware packages of our time, T.I.M. III.

What is T.I.M.?
T.I.M. is Total Information Manage-

ment. Programmers love it due to its original solutions
to classic data management problems. Non-
programmers adore it since they can use it to achieve the
same results as with other more complicated
programmingdike packages.

What Makes T.I.M. So Simple
to Use?

We at Innovative Software, Inc. designed
T.I.M. from day one with the end user in mind. Maybe
he is a programmer who doesn’t have time to learn a
new language. Or perhaps a neophyte who fears coding
pads and lines numbered by tens. We felt that a data
management package should be able to be used by
anyone from a systems analyst to a secretary. That’s why
T.I.M. takes a full menu-driven approach, uses multiple
HELP screens, and has a manual that sets a new stan-
dard in documentation.

never seen a computer before in your life, you’ll be
able to read and understand our manual immediately.
The second section is a primer which goes through
several examples for you, again in plain English.
These true-to-life examples take the beginner by the
hand, and instructs him what to do and when. You
will be able to see for yourself that T.I.M.s only limita-
tion is the imagination of the user.

Features of T.I.M.
T.I.M. has all of the features one has come to

expect from a data management package, as well as
many new ones. For example, a word processing interface
that allows you to merge information from a T.I.M. file
with letters or other documents created by a word pro-
cessor. Now you can automatically send personalized let-
ters to hundreds or thousands—quickly and easily.
T.I.M.s Select command enables you to pull specific infor-
mation from a file. For example. “All customers who live
in a certain ZIP code, whose last name begins with the
letter A to L, whose balance due is less than $50.00.” A
sophisticated report generator and even a list generator are
also included.

How powerful is T.I.M.? With a maximum
record size of 2400 charactars and the ability to keep up
to forty fields sorted properly at all times, T.I.M. is
powerful enough to handle just about any application.
T.I.M. can handle over 32,000 records per file, and two
files can be linked together for reports if your application
requires a many-to-one relationship. T.I.M. also includes
all of the same editing commands as your word pro-
cessor, thus making data entry and editing a snap. You
can also pull selected records from one file to place them
into another. Files may be restructured to add or sub-
tract fields and/or change field lengths or types.T.I.M.
even has it’s own utility for backing up hard disks onto
floppies.

Where to Find T.I.M.
T.I.M. is available from Lifeboat

Associates. Or you may purchase from us direct
by calling 913/383-1089. Either way you will

have the finest data management
_ program available.

The Manual
Many people believe that the manual is

just as important as the software itself a view that we
at Innovative Software, Inc. tend to share. The
manual for T.I.M. is divided into two sections, the
Reference section and the Primer. The Reference
section describes all of T.I.M.s commands
and subcommands. This is done in
English, not in technical terms or in i
our own language. Even if you have |

Available for CP/M,* and
IBM PC DOS.**
CP/M version—*695. IBM PC version—*495.

Innovative Software, Inc.
9300 W. 110th Street, Suite 380
Overland Park, Kansas 66210 USA
913/3834089

TIM is a Trademark of Innovative Software, Inc.
*CP/M and MP/M are Trademarks of Digital Research
**Trademarks of IBM

AS AN INTRODUCTION TO OUR COMPANY
Ml MAGTEK MEDIA IS PROUD TO OFFER

FLOPPY DISKETTES

Product Family Product Description
Part

Number
(3201-)

Price Per
Disc $

Q"
Flexible Disc 1s
Single-Headed Drives
Single-Density Media

IBM Compatible (128 B/S, 26 sectors)
Shugart Compatible, 32 Hard Sector
Wang Compatible, 32 Hard Sector w/Hub Ring

3062
3015
3087

2.98
2.98
3.69

8”
Flexible Disc 1d
Single-Headed Drives
Double-Density Media

IBM Compatible (128 B/S, 26 sectors) 3090 3.83

8”
Flexible Disc 2d
Double-Headed Drives
Double-Density Media

Soft Sector (Unformatted)
32 Hard Sector, Shugart Compatible

3102
3181

4.47
4.47

Mini Flexible Disc 1d-40
514” Single-Headed Drives
Double-Density Media
40 Track Tested

Soft Sector, w/Hub Ring
10 Hard Sector, w/Hub Ring
16 Hard Sector, w/Hub Ring

3481
3483
3485

3.12
3.12
3.12

Mini Flexible Disc 2d-40
514” Double-Headed Drives
Double-Density Media Tested For
40 Track Tested Per Side

Soft Sector, w/Hub Ring 3491 4.54

Mini Flexible Disc 2d-80
514” Double-Sided Drives
Double-Density Media
80 Track Tested Per Side

Soft Sector, w/Hub Ring 3501 5.54

I.B.M. MAXELL C.D.C. BASF & VERBATIM also available
Please call us for all your computer needs.

Professional Protection for Floppy & Mini Disks

Capacity Faaturaa
Articla

Numbar Length Braadth Haight

Standard
Diaka

90
Tray-with lid
and lock
9 card rests

F90
13%" app.
(350 mm)

9.5" app.
(240 mm)

9" app.
(230 mm)

40
Tray-with lid
and lock
4 card rests

F40
8Y4 " app.
(210 mm)

9.5" app.
(240 mm)

9" app.
(230 mm)

S"
Mini-

Diskettes
90

Tray-with lid
and lock.
9 card rests

M85
13%" app.
(350 mm)

71/8" app.
(180 mm)

6.5" app.
(165 mm)

$59.00

$42.50

$46.00
Tray-with lid
and lock
4 card rests

81/4" app. 71/e" app. 6.5" app.
M35 (210 mm) (180 mm) (165 mm) $29 .50

MAGTEK MEDIA DATA suppuEs, no.

• Lockable — Portable — Secure.
• V shape for easy retrieval.
• All boxes with dividers in stepped pattern for indexing

system.
• Self adhesive protective indexes supplied with boxes.
• All dividers are height of disks — eliminating need for

guide cards.
• Dividers have locating device which permanently locks

divider in position.
• Made from ABS Plastic — anti static.
• International standard size to fit most suspended frame

systems.

5916 - 18th Avenue, Brooklyn, N.Y. 11204
1 -800-221 -0869 (Out of N.Y. State)(212) 232-7166

QO % DUTY CYCLE PRINTERS

SETTING NEW STANDARDS IN QUALITY
APART FROM THE REST

ML84
136
200

MODEL ML80 ML82A ML83A
Columns: 80 80 136
Print Speed: (cps) 80 120 120
Bidirectional/Short Line Seeking: — jX jX
Throughput: (Ipm)

20 Char/line 86 187 173
40 Char/line 51 123 117
80 Char/line 28 73 71

136 Char/line — — 46
Head Life — 200 million characters
Graphics Option: Block 60x66 60x66

2350
136
350

266
184
114
74

72x72

500
340
210
136
500 million
72x72RS 232: Opt.

Tractor Feed: Opt.
Friction Feed: v*
Pin Feed: k*
Super Scripts • Sub-Scripts • Underline: —
Colors: —

Std. Std. Opt.
Opt. Std. Std.

jX — —
— —

Opt.
Std.

Immediate Delivery • Technical Assistance • Leasing ♦ Maintenance • Interface Cables ♦ Ribbons

GR AYDON-SHER MAN,INC.
(212)289-3199 (201) 467-1401 * TWX #710-983-4375 (GRAYDON MAWD)

LJFELiNiU)
The Software Magazine
May 1982

Editor-in-Chief: Edward H. Currie
Editor: Jane Mellin
Circulation/Customer Service: Patricia Matthews
Design/Production: K. Gartner
Typographer: Harold Black
Cover by K. Gartner

Volume II, No. 12
Copyright © 1982, by Lifelines Publishing Corporation. No portion of this publication may be
reproduced without the written permission of the publisher. The single issue price is $2.50 for
copies sent to destinations in the U.S., Canada, or Mexico. The single issue price for copies
sent to all other countries is $3.60. All checks should be made payable to Lifelines Publishing
Corporation. Foreign checks must be in U.S. dollars, drawn on a U.S. bank; checks, money
orders, VISA, and MasterCard are acceptable. All orders must be pre-paid. Please send all
correspondence to the Publisher at the below address.

Lifelines is a trademark of Lifelines Publishing Corp.
The Software Magazine is a trademark of Lifelines Publishing Corp.
SB-80 and SB-86 are trademarks of Lifeboat Associates.
BASIC-80 is a trademark of Microsoft, Inc.
CB80, CBASIC2, PL/l-80, MAC, XLT86, and DDT86 are trademarks, CP/M and CP/M-80
registered trademarks of Digital Research, Inc.
The CP/M Users Group is not affiliated with Digital Research, Inc.
dBASE II is a trademark of Ashton-Tate.
PLAN80 is a trademark of Business Planning Systems, Inc.
PMATE is a trademark of Phoenix Software Associates, Ltd.
KIBITS is a trademark of Bess Garber and Seton Kasmir.
Superbrain is a trademark of Intertec Corp.
T/MAKER II is a trademark of Peter Roizen.
TURBODOS is a trademark of Software 2000.
WordStar and SpellStar are trademarks of MicroPro International Corp.
UNIX is a trademark of Bell Laboratories.
Z80 is a trademark of Zilog Corporation.

Lifelines (ISSN 0279-2575, USPS 597-830) is pub-
lished monthly at a subscription price of $18 for
twelve issues, when destined for the U.S., Canada, or
Mexico, $40 when destined for any other country.
Second-class postage paid at New York, New York.
POSTMASTER, please send changes of address to
Lifelines Publishing Corporation, 1651 Third Ave.,
New York, N.Y. 10028.

L-FSLirico
The Software Magazine

Volume II, No. 12May 1982

Contents The CP/M® Users Group

Opinion CPMUG™ Volume 80 and Abstracts 22

Editorial Comments Software Notesby Edward H. Currie 4

Letters

The UNIX™ Operating System

47
Pseudo-Relocatable Subroutines

by Gregory A. Knott 41

The Future of UNIX, Part 2 Product Status Reports
by Jean L. Yates 5

New Products 50

Features
New Versions 51

A Spelling Program
Bugs CO

by Harry Tennant, Ph.D. 9 b

On TURBODOS™ Version List 54
by Ron Fowler 12

Bit Manipulation In PL/l-80™, Part 2 Miscellaneous
by Mike Karas 17

Developing Applications With dBASE II™ Attention Dealers! 8
by Steve Patchen 23

KIBITS™ 35
8080 Assembler Programming Tutorial:

Pitfalls of Programming Notice 42
by Ward Christensen 30

A Detailed Description of PLAN80™, Part 1 Change of Address 43

by Raymond Sonoff 33
Renew 46

Full Screen Program Editors: PMATE™
by Ward Christensen 36 OOPS! 52

Opinion _____________
Editorial Comments EdwardH. Currie

sor to support a variety of machine
codes.

Those who would attempt to demean
sixteen-bit processors like the 8088/
8086 have failed to recognize the fact
that there are many benefits other than
sixteen bit architecture and expanded
instruction sets.

It should be noted that a major advan-
tage of the sixteen bit micros is their
ability to address large amounts of
memory. This means that, for example,
the manipulation of large arrays will
now be quite practical. Those of you
engaged in scientific endeavors (which
often involve large data sets and pro-
grams written in FORTRAN) should be
enthusiastic about this development,
particularly in light of the 8087 arith-
metic processor rumored to be avail-
able soon for the IBMPC. Godbout,
Seattle and others are also configuring
hardware which permits the use of this
interesting device.

Also there seems to be some confusion
as to the differences in the 8088 and
8086 at the software level. If you have
come up with some neat techniques for
determining, via software, whether the
processor is an 8088 or 8086, send them
along and we will publish them.

Some of you have suggested that per-
haps the next quantum leap in compu-
ter technology will occur when biologi-
cal logic circuits are available. Experi-
ments are already underway to develop
techniques for putting conductive
pathways onto protein molecules.
Once this technology has been mas-
tered it may be possible to produce bio-
logical devices which are in fact tiny
microcomputers requiring no external
power sources but instead gathering
necessary power from thermal energy
available in the environment.

Furthermore these devices could be
grown using techniques developed by
genetic engineering. Thus future com-
puters could be grown to specification
as true "micro" computers.

The mind boggles as we contemplate
what the future of microcomputing
holds for us all . . .

Bits, Bytes, Books and Random I/O

A number of you have written and in-
quired about the possibilities for
standardization in the area of applica-
tions packages. For example, it has
been suggested that wherever possible,
control sequences should have a com-
mon definition among all applications.
Of course, this is an excellent sugges-
tion and you should continue to point
out such areas where standardization
reduces complexity for the end user.
Some of us tend to forget that those just
entering the arena of the microcompu-
ter have a true appreciation of the need
for uniformity and consistency. While
in some respects this particular sugges-
tion would require a monumental ef-
fort in an industry largely devoid of
standards, it is important to maintain
an awareness of ergonomics.

After all, many of us got our first inkl-
ing of the complexity of microcompu-
ters when we discovered that there are
eight ways to put a diskette into a disk
drive - most of which are not very in-
teresting.

Fortunately a number of fine texts are
emerging to assist you in learning
about micros and the multitude of ap-
plications now available. Arthur Nai-
man has provided a particularly nice
discussion of WordStar, including
chapters such as "Getting Started with
WordStar in One Hour". This excellent
book is well illustrated and reflects the
author's concern with clarity.

Susan Blumenthal has authored a book
titled "Understanding and Buying a
Small-Business Computer", investigat-
ing such topics as software evaluation,
consultants, peripherals, fundamentals
of microcomputer systems, system se-
lection, time-sharing, word processors,
backup procedures, etc. This treatment
manages to cover these topics while
maintaining an acceptable level of
complexity for the first time user.

X.T. Bui has provided an interesting
examination of decision models, fore-
casting models, investment models and
multicriteria decision-aid models for
those interested in financial modeling

and forecasting. His book, entitled "Ex-
ecutive Planning with BASIC", pro-
vides the listings for the models pre-
sented, along with descriptions of the
methods employed in each model, il-
lustrative examples and discussion of
the results produced by the various
models.

Those interested in Pascal will be
pleased with the "Pascal Primer" by
David Fox and Mitchell Waite. You will
recall that these folks brought you that
fine text the "CP/M Primer". This
latest book was designed for those with
a passing knowledge of BASIC and a
wish to learn Pascal. The latter allows
the programmer to produce programs
which are from seven to ten times faster
than their BASIC counterparts and
50% faster than an equivalent FOR-
TRAN program. Their treatment uses
University of California at San Diego
(UCSD) Pascal as the version of Pascal
discussed. Perhaps the best statement
of the authors' intent is their prefatory
remark that "The book is committed to
the mastery of Pascal without tears".

It's interesting to note that application
software is in fact the guiding force in
determining the architecture of micro-
computers, as manufacturers move
heaven and earth to gain access to the
wealth of software required by the
market.

A number of manufacturers are config-
uring dual processor systems which
permit the running of eight /six teen-bit
software. This seems to be an extension
of the philosophy behind the Microsoft
Softcard for the Apple. It may well be
that future generations of machines
will have multiple processors to permit
the running of eight- and sixteen-bit ap-
plications. For example, there is a new
card for the Apple which provides an
8088 with 64K of RAM. Look forward
to seeing this trend spread across all
classes of microcomputers in the near
future.

Perhaps future generations of micro-
computers will all use a common proc-
essor which can arbitrarily select mi-
crocoding, allowing the same proces-

4 Lifelines/The Software Magazine, May 1982

ON UNIX ___________
The Future of UNIX, Part 2

Jean L. Yates

Thompson went to Berkeley and work-
ed there as a visiting professor for a
year. His efforts, along with the efforts
of Dr. Fabry, Bill Joy, and many other
programmers, resulted in Berkeley's
version of UNIX. Today this version is
preferred by many commercial and re-
search installations over the Bell Sys-
tem's V7. Berkeley has two flavors of
UNIX, 4.1 and 2.8. Berkeley 4.1 runs
only on the VAX computer, although
with judicious use of porting techni-
ques, it can be ported to the 68000
microprocessor.

Berkeley has shipped 230 tapes con-
taining BSD 4.1, but we estimate that
th re are many more installations than
represented by those tapes. Portions of
Berkeley's code, specifically the C
Shell, vi, and some of the UNIX util-
ities, are used widely across the UNIX
community. Vi is probably the most
popular text editor for the UNIX
operating system today. At Berkeley,
most of the refinement and optimiza-
tion of UNIX code occurred on the
VAX computer and is represented in
BSD 4.1. This is probably some of the
cleanest and most clearly optimized
UNIX code available today, and people
within and outside the Bell System
utilize it.

Berkeley also continues to sell BSD 2.8,
UNIX for the PDP-11. They have ship-
ped over 100 tapes of that product. It
contains many of the same elements of
4.1, but in a less optimized form.

Support

are using it to develop products that
they will send to end users.

The Bell System

Who Uses UNIX?

Gnostic Concepts is still in a prelimi-
nary stage of data collection for the
market numbers of its UNIX survey,
but we have some approximate data.
We are estimating the number of source
and binary sites for UNIX, as shown in
Figure 1. The Bell System dominated
until 1981, but almost 4,000 commer-
cial binary licensees in 1981 resulted in
commercial sites overtaking the Bell
System for the first time. What may be
a little surprising is the large number of
universities and research institutions
using UNIX. We suspect that almost
ninety percent of universities with a
computer science department have a
UNIX source code license. The
government /military installations
grew about twenty-five percent this
year and will still remain a small but
lucrative proportion of the total UNIX
user community.

Who are the UNIX users today? Let's
take a look. In education there are
about 715 source code licenses shared
among 1,720 sites. Government has
approximately 125 source code licenses
among 270 sites. Commercial has ap-
proximately 350 source code licenses
among 4,000 sites. These numbers
must be tempered by the fact that the
new reporting period for binary
licenses will not occur until several
months into 1982. At that point, if the
Bell System chooses to release the
number of binary licenses sold in 1981,
we may find that these numbers are
underestimates.

Commercial users now include in-
dependent telecommunications com-
panies, computer and software com-
panies, large industrial corporations,
OEMs selling to vertical markets and
end users. The commercial end users
will increase more rapidly, while com-
puter and software companies' rate of
increase begins to lag as they are
saturated. These companies were some
of the first to purchase UNIX in the
commercial environment, because they

In the Bell System, about 5,000 com-
puters employ UNIX. They are not only
used in research and software de-
velopment, but utilize variants of UNIX
for operating equipment and are also
used as office tools. The Bell System
stays one version of UNIX ahead of the
outside world; they are now running
System IV internally. Some installations
are rumored to be running Berkeley's
VAX version BSD 4.1. This is a version
not supported by Bell Labs, but sup-
ported by Berkeley.

It is important that the Bell System has
internally standardized on System III as
a commercial as well as a research pro-
duct. Although UNIX was previously a
viable product from a research sense,
moving UNIX into a commercial realm
indicates an acceptance (internal to the
Bell System) of the product as an
operating organizational standard,
rather than just a research tool. This in-
dicates that the product should have a
long and fairly consistent lifeline.

Govemment/Military

The govemment/military installations of
the Department of Transportation, the
Army's DARCOM facility, the Navy at
Bethseda and the Air Force at Gunther
are small, but indicate a trend towards
the use of UNIX in the military. The Bell
System has now announced UNIX
support at these installations in the
military sphere.

Berkeley UNIX

The key to using UNIX in a commercial
environment is the ability to support
the product. In the past, universities
could justify internal support costs by
the low initial purchase price. Within
the Bell System, individual installa-
tions supported themselves with the aid
of Bell Labs' research and hotline facili-
ties. The govemment/military, com-
mercial installations, etc., all sup-
ported themselves, or in many cases

(continued next page)
5

We've mentioned Berkeley UNIX many
times here, and I'm sure that experi-
enced readers know all about it, but I'm
going to review it for those of us that are
not so familiar with it. In 1975-76 Ken

Lifelines/The Software Magazine, Volume II, Number 12

turned to Berkeley for advice. Today,
the support situation has changed. Bell
Labs still supports Bell Labs while
ATT/ Western Electric supports itself
and the government /military. Micro-
soft presently supports the PDP-11
with its XENIX product and Altos
Computers. Microsoft has many pro-
ducts under development. Interactive
Systems supports the PDP-11 and the
Onyx; I believe they have started sup-
port for Plexus.

Unisoft of Berkeley, which is Jeff Freed-
man's company, supports Codata, CM
Technologies, and Dual Systems. Uni-
soft only supports the 68000 version of
UNIX and also performs ports of UNIX
to the 68000 microprocessor. Berkeley
supports Berkeley itself, and supports
many tie-ins across the Arpanet. It has
an informal support network of all pur-
chasers of 2.8 and 4.1 tapes. Formerly,
this support consisted of sending elec-
tronic mail or calling the professors and
programmers at Berkeley. How long
they will have time to support the
growing number of Berkeley UNIX
users is unclear, but obviously the
situation can't go on for much longer.
Wollongong supports Perkin-Elmer.

Then we see a number of computer
companies that either are developing
UNIX-based products or use UNIX in-
ternally as a standard, and mostly they
support themselves. One group of con-
cern is large installations of UNIX in in-
dustrial corporations, for example,
aerospace companies or manufacturing
organizations. For the most part, they
support themselves, with the aid of
Berkeley.

Supporting UNIX

DEC. The majority of computers out
there right now running UNIX are
DEC equipment, but the scenario will
change rapidly. However, it's unclear
that DEC will support UNIX. My
message to DEC is, "Please, please
DEC, it will make life so much easier
for us and you could make so much
money."

There has been some speculation that
the Bell System might eventually sup-
port UNIX for the outside world, but
obviously this is a long range scenario.
The announcement of support for the
government /military is an indication
of a trend in that direction but the cost
and personnel implications of support-
ing a possible 10,000+ installations of
UNIX by late 1982 are mammoth. At
best, we speculate that the Bell System
will suppport source code licensees on-
ly, leaving binary licensees' support to
the source code vendors with resale
privileges.

More and more hardware companies
are turning to software houses with ex-
pertise in UNIX for their support needs.
Interactive Systems supports Onyx and
now is beginning to support Plexus.
Unisoft of Berkeley is supporting about
four different companies with 68000
based systems. Microsoft, with the
XENIX product, is supporting PDP-11
installations that produce and will soon
be supporting Altos and many other
companies. The level and type of sup-
port, etc. varies from facilitiy to facility
but all have themes —a combination of
telephone inquiry, electronic mail in-
quiry, and a team of support engineers
answering questions. The support issue
is tying up hardware companies, as is
the issue of porting.

pan i e s such as In s t rumen ta t i on
Laboratories all either are looking at or
have released products based on UNIX.

In Japan, software now is understood
to be the key to entering the micro-
computer market , and just about
everyone is looking at UNIX as a po-
tential way to enter the U.S. market
with a large software base. Significant-
ly, microprocessor manufacturers are
looking quite logically at UNIX with
Zilog, in our opinion the furthest along
towards fully supporting and selling a
UNIX based product — ZEUS. Zilog
has had a released product for about six
months now, and their documentation
and support has progressed by far the
furthest of the three companies. Moto-
rola has yet to announce any type of
UNIX support but it is strongly be-
lieved that they are working on it; the
same situation occurs with Intel, al-
though their recent blitzes of adver-
tisements for their Intel-developed
operating systems may indicate a possi-
ble desire to stop the UNIX onslaught.

Porting UNIX

The porting of the UNIX operating
system onto a new microprocessor-
driven system is not a simple proposi-
tion, as many companies can testify.
The cost can range from a minimum of
$25,000 to over $1 million, depending
upon the decision as to the complete-
ness of the port, the company doing the
port, and the target processor. Porting
UNIX can take three months for a team
of skilled experts working quickly, to
two years for a group of less experi-
enced people trying hard but learning
as they go along. Also, there are vari-
ous levels of implementation of UNIX,
specifically implementation of VAX
versus PDP-11 Berkeley UNIX. If VAX
4.1 Berkeley UNIX is needed, fewer
shortcuts are taken in the implementa-
tion of 68000 based systems. I will note
here speci f ica l ly that Unisof t of
Berkeley offers a port allowing the use
of the BSD 4.1 versions of products
such as the C shell and vi. This is a dis-
tinct advantage for a vendor wanting
to offer maximum capabilities and
quality of UNIX software.

Another considerat ion in por t ing
UNIX is software compatibility. When
the port is made, a lot of choices are
made about how the system drivers
operate and what kind of UNIX is port-

Who's Looking at UNIX?

Mainframe companies are looking at
UNIX; we speculate that companies
ranging from IBM to Amdahl, NCR,
Univac, Honeywell, and Prime are
looking at the operating system; some
have r e l ea sed p roduc t s . In the
minicomputer area, we hope that DEC
is looking at support for UNIX along
with Data General, Perkin-Elmer, and
Hewlett-Packard(again speculative) .
In the small business and personal
areas, Basic Four, Xerox, BBN, Con-
vergent Technologies, many OEMs,
Apple, Fortune Systems, and com-

What does it take to support UNIX?
Today, Bell Labs uses a telephone
hotline for its clients, as do many com-
mercial vendors. Interactive Systems
uses an innovative and apparently ef-
fective mail system where users send
messages to the support team and they
respond in like. Berkeley has supported
quite a few people via their electronic
mail on the Arpanet, and this will con-
tinue in an informal sense. At some
point obviously, the support issues will
grow beyond what Berkeley can han-
dle. It's not that there are so many bugs
in 4.1, because they aren't; but lots of
beginners ask lots of questions. A big
wild card in the support situation is

6 Lifelines /The Software Magazine, May 1982

are in use, communications as well.
These are some of the more traditional
uses of UNIX, but at the top of the list
are business applications, such as ac-
counting, financial modeling, transac-
tion processing, and data entry. The
largest number of new products will
come in the business area, as many dif-
ferent vendors start selling UNIX sys-
tems into business and office automa-
tion environments.

In Figure 3 I am showing you the way
that Gnostic Concepts is counting
UNIX users. We are attempting to
quantify not only the people who are
out there, but how much they are
spending and how much they will
spend. As you can see, we have person-
nel, outside services, packaged soft-
ware supplies, and "other." This is not
necessarily in scale for the proportions
but it is approximate. Also, you see
hardware and as you look at Figure 4,
which is UNIX-related EDP expendi-
tures, you see an expansion of the $9
billion figure that was quoted; this was
really rather a misquote, since the
quote came from the top end of the top
number at the end of the chart, and did
not describe the range.

The 1986 figure still gets up to $9 billion
but that is not on this chart. What I've
done here (and this is data that we are
still in the process of developing) is try
to give you some idea of the ranges of
UNIX-related sales. As it stands right
now, this chart includes UNIX and the
"UNIX-like" products such as Cromix
and Whitesmiths', Idris, etc. The white
part of the bar is personnel, support,
and outside services and, at this point,
applications software. We have not yet
separated applications software out of
this pool; we have not reached that
level of research, although we will
shortly. The middle part of the bar is
hardware, and as you can see, it will in-
crease from about $7 million in 1980 to
$1.8 billion in 1985. The bottom part of
the bar indicates cost for UNIX, the
system software, utilities and lan-
guages themselves rising fairly rapidly
to a $250 million market in 1985.

IF

ed onto the target machine. Appli-
cations software- portablity is still up in
the air, but increasingly we find com-
mercial vendors taking pieces of Ber-
keley UNIX while maintaining stan-
dardization with System III.

Getting a compiler that works correctly
for a target processor is a difficult pro-
position, and only the best software
houses performing ports have managed
to get complete debugged cross com-
pilers running reliably. Another factor
which limits the speed of performing
ports is the necessity of porting to pro-
totype hardware. If the port is to a
piece of untried hardware, which it
seems is mostly the case these days,
software vendors can spend as much
time tinkering with the hardware as
they do with the software.

Last and most important, we cannot
emphasize enough the requirement for
very skilled personnel in the porting
job. Unfortunately, this isn't a job that
can be done by throwing a lot of per-
sonnel and time at it. Highly trained
UNIX people with hardware architec-
ture expertise are needed to perform the
port correctly and quickly. Unfortu-
nately, Berkeley probably hasn't pro-
duced more than twenty UNIX "gurus";
of course there are other research in-
stitutions, but there still are not that
many people with this level of training.
For that reason, everyone has been
slowed down in moving their software
over, as they wait in line for the teams
of qualified people to get to their
machine.

As you can see from the list in Figure 2,
there have been a number of UNIX
ports completed. This list is not com-
plete because there are many in pro-
gress and I'm sure I've missed them. But
basically you can see in the mainframe,
mini and micro world that the operat-
ing system is moving across a lot of
places. By the end of 1982 we expect to
have over forty more companies added
to this list.

FIGURE 1 -
WESTERN ELECTRIC

UNIX LICENSING DATA

Total Number of
Computers Installed*

SEGMENTS
As of

8/25/80
As of

12/31/80
As of

5/1/81

BELL 630 750 825

UNIV 1336 1575 1716

FED GOV’T 156 197 216

COMMERCIAL 224 287 341

TOTAL 2366 2809 3098

*Source Lie Data from USENIX
Jan and June 1981

1980-81 65 percent increase

SOURCE LIC’S*

Source Lie’s*
Computers

Installed

12/31/80 800 1600

5/1/81 1078 2273

9/1/81 1249 2538

• Source Lie Data from Otis Wilson
Jan 12, 1982

1980-1981 106 percent increase

FIGURE 2 -
SUCCESSFUL UNIX PORTS

•AMDAHL 470 (IBM 370)

• BBN C50/C70

• DATA GENERAL (C COMPILER)

• DEC PDP11

• DEC PDP7

• DEC PDP8

• DEC VAX

• FORTUNE SYSTEMS

• HONEYWELL 6000

• IBM 370 (C COMPILER)

• IBM 4300 (under development)

• IBM SERIES 1

• IBM 8885/8086
(under development
MICROSOFT/ALT/OS)

• MOTOROLA 68000
(under development —
40 companies)

• ONYX 8002

• PERKIN-ELMER

• PLEXUS SYSTEM 10

• ZILOG Z8000’S
(under development —
15 companies)

(continued next page)

UNIX Applications
We now come to a section where I will
attempt to describe some of the busi-
ness applications that are either existing
or planned for UNIX. Software devel-
opment and engineering applications

Lifelines/The Software Magazine, Volume II, Number 12

FIGURE 3 — USER SPENDING CATEGORIES FIGURE 4 — GNOSTIC CONCEPTS SURVEY OF
UNIX USER SPENDING CATEGORIES

$5.1B

= Personnel, Support,
Outside Services, Supplies, Application Software

= Hardware

= System Software, Utilities, Languages

$3.2B

$2.6B

$1.1B

$700M

S150M

7M
1980

■ I35M- >> ,1
1981

60IVI
1982 19841983 1985

Purchase

Professionals'
Salaries

Hardware

Personnel

X Support***-
X Personnel

\Salaries
Direct X .

Burden X /Outside
Services

Packaged Software
Supplies

Other

Attention Dealers!
There are a lot of reasons why you should be carrying Lifelines/The Software Magazine in
your store. To provide the fullest possible service to your customers, you must make this

unique publication available. It will keep them up to date on the changing world of software:
on updates, new products, and techniques that will help them use the packages you sell.

Lifelines can back up the guidance you give your customers, with solid facts on the
capabilities of different products and their suitability to a variety of situations. Now we can

also offer you an index of all back issues of Lifelines, opening up a full library of information
for you and your customers.

For information on our dealer package, call (212) 722-1700, or write to Lifelines Dealer Dept.,
1651 Third Ave., New York, N.Y. 10028.

Lifelines /The Software Magazine, May 19828

Features

A Spelling Program
Harry Tennant, Ph.D.

to the development of this system in an
effort to improve its language under-
standing capabilities. In addition,
about two or three days worth of effort
had gone into a spelling correction rou-
tine to correct errors in the users' typed
queries. During one demonstration,
the demonstrator inadvertently mis-
spelled a word, and didn't notice his
mistake. When the program noticed
and corrected the spelling error, the
reviewer was so impressed, he kept
mentioning it throughout his visit. No
mention was made of the natural lan-
guage understanding capabilities, but
that one spelling correction left him
very favorably impressed with the pro-
ject!

Spelling Correction in
Document Preparation

One useful application of spelling cor-
rection is as an aid in document pre-
paration. The spelling checker must in-
clude a large spelling dictionary and a
fast checking algorithm. A user sub-
mits a file of text to the spelling checker,
then the checker looks up each word in
the dictionary. If the word is found, it is
accepted. If it is not found, it is ana-
lyzed as a possible misspelling. De-
pending upon the confidence one has in
the program, the correction may be
automatically substituted into the file,
or the user may be consulted on the
matter.

Ralph Gorin at Stanford University
wrote a program in the early '70s to do
spelling correction on text files. (It has
since been improved upon elsewhere.)
His goals were to write a fast spelling
checking algorithm that would operate
over a large vocabulary. The basic
datastructure is a three dimensional ar-
ray of 26x26x10 elements. Each ele-
ment in the array is the head of a list of
dictionary words. An array element
represents all the words in the dic-
tionary that start with a particular let-
ter pair and are of a given length. When
the spelling program reads in a word, it

looks it up in the array. If it finds it
there, it goes on to the next word. If an
exact match is not found, the program
attempts to detect and correct one of
four specific errors. They are:

1)1 wrong letter (mixspell)
2)1 missing letter (mispell)
3)1 extra letter (misxspell)
4)2 transposed letters (mispsell)

This spelling corrector was implement-
ed in DEC10 assembly language so it
would be fast, and parts of the algo-
rithm are very dependent on particular
DEC10 instructions. Some of the effi-
ciency of the algorithm derives from
the fact that many of the characters of
two words can be compared simulta-
neously with single operations on the
DEClO's 36 bit words. The check for
one wrong letter is straightforward.
The check for one missing letter is done
by inserting a null (0 character) in each
character position in the word, then
checking for one wrong character. The
check for an extra character is made by
deleting each character in turn and
looking the new word up. Transposes
are checked by transposing each pair of
adjacent characters in the word and
looking up the resulting new word.

The most obvious difficulty with this
kind of system is that it must have a
large vocabulary. Programs with vo-
cabularies in the hundreds of thou-
sands of words are not uncommon.
However, one technique to reduce the
vocabulary size requirements without
diminishing the number of words that
are recognized is to do morphological
analysis - automatic recognition and
stripping of prefixes and suffixes. This
is a trade-off of processing time (to do
the morphological analysis for an un-
recognized word) vs. storage (equiva-
lent to a vocabulary as much as 5 to 8
times larger). It is also a convenience
for the dictionary builder, and in-
surance against omitting a morphologi-
cal variant by oversight. Of course,
some additional checking is also need-
ed to avoid accepting variants of ir-
regular words like "feets" and "goed".

(continued next page)
9

Touch panels, light pens and joysticks
notwithstanding, most human-com-
puter interaction is through a key-
board. And frequently what goes
through the keyboard is misspelled.
Fortunately, most of the spelling errors
and typos that are generated when in-
teracting at a keyboard are noticed and
corrected immediately. In fact, if you
are like me, the most frequently pressed
key on the keyboard is the backspace
key! Some spelling errors, however, get
through. Whether it is carelessness, ig-
norance or indifference, the effect is
that the computer swallows a lot of
misspelled words.

In some application areas it doesn't
make much difference to the computer
how badly one might spell. In text edit-
ing, for example, the computer doesn't
care about spelling. The user will be
embarrassed by the errors, not the
computer. In other applications, how-
ever, ones in which a program inter-
prets what is typed, if the user doesn't
spell the input correctly, the program
won't have an inkling of what the user
was trying to get across.

Spelling is a common task, and mis-
spelling (believe it or not) is something
that people do in a more or less uniform
way. In other words, spelling correc-
tion is a task that is Well suited to com-
puterization. This article will discuss
some of the attempts at spelling correc-
tion programs and will indicate some of
the trade-offs in designing spelling cor-
rection algorithms.

Several spelling correction techniques
will be discussed. One algorithm will
be described in detail including an as-
sembly language implementation and
some performance indicators.

Before getting into detail, allow me to
illustrate the importance of spelling
correction. I was once on a research
team writing a natural language under-
standing system for the military. Vis-
itors from the military would come by
for demonstrations from time to time.
Many man-years of effort had gone in-

Lifelines/The Software Magazine, Volume II, Number 12

A warning is given to users of this spell-
ing program, at least in the version I
use, against assuming that a document
will be free of spelling errors if the
words in the file have been checked
against a dictionary. Fairly frequently,
misspellings result in a character string
which is also a properly spelled word,
but does not belong in its context. A
quick search of some uncorrected files
yielded many examples, a few of which
are shown here.

1) Do to the bad weather and lack of
interest, the CSL canoe trip planned
for this weekend has been cancelled.

2) Its a girl!
3) PS: < tennant > meeting.report con-

tains some observations form the
June meeting

4) How many hours of NOR were thee
for each type plane during the years
1970, 1971, 1972, and 1973?

5) Think you, I think I have found the
answer.

6) If it chooses wrong, it must backup
and try over.

7) One of the parses will eventually be
abandoned latter in the parse when
more information is available.

Detecting errors of this kind requires
more knowledge of the context in
which the "respellings" occur. Detect-
ing many such errors is within the state
of the technology of natural language
understanding.

High Speed
Word Recognition

A program was developed for the
PLATO educational computer system
to quickly search a dictionary to verify
that either a student's input word was
in the dictionary or it was a misspelling
of a word in the dictionary. In this ap-
plication, the goal was only recogni-
tion of words, not replacing misspelled
words with their proper spellings as in
the application discussed above. In the
PLATO scheme, the correct spellings
of the words are not even stored in the
system, so correct spellings cannot be
substituted for misspellings!

The PLATO algorithm works by repre-
senting not the spellings of dictionary
words, but features of the spellings of

dictionary words. The most important
features for word recognition occupy
the most significant bits of the com-
puter word. The less significant fea-
tures occupy the less significant bits.
The feature words were sorted, so the
words with the most similar sets of
word recognition features were closest
together. A user's word can be checked
against the dictionary words by 1)
building a feature word for the user's
word with the same algorithm used for
the words in the dictionary, then 2) do-
ing a binary chop search of the dic-
tionary feature words for a match. If
there is an exact match, the user's word
has been found in the dictionary. If
there is not an exact match, the words
closest to the point where the search
terminated are the most likely candi-
dates to be the proper spelling of the
user's word. The degree of disagree-
ment of the features of the user's word
and the nearest dictionary words is
computed. If the disagreement is suffi-
ciently small, the user's word is ac-
cepted as a misspelling. If the disagree-
ment is over a fixed threshold, the word
is rejected as unknown. Disagreement
was computed by EXCLUSIVE ORing
the unknown feature word with a dic-
tionary feature word, then counting
the number of ones (the number of dis-
agreeing bits) in the result.

The features used in the PLATO word
recognition routine are shown below in
order of importance.

1) length
2) first character
3) set of letters
4) set of digraphs
5) syllables

The algorithm was implemented on 60
bit per word CDC computers, so there
was plenty of room for features in each
computer word. Each dictionary word
corresponded to one computer word
for efficient comparison. The first letter
was stored in ASCII form. The length
was represented in grey code so that
words of nearly equal length would be
in the same general locations in mem-
ory. The letter content was represented
in a 16 bit field. If there was at least one
"a" present somewhere in the word, the
bit corresponding to "a" was set. Rep-
resenting a set of 26 letters in 16 bits re-
quired some overlap - some bits indi-
cated more that one possibility, e.g.
one bit indicated that there was either
an "s" or "q" in the word. The set of

digraphs (letter pairs) in the word was a
redundant mapping like the letter con-
tent mapping. Digraph content was in-
cluded because of the frequent error of
letter transposition. Finally, an attempt
was made to represent the syllabic con-
tent of the words so that words that
sound the same would have similar
representations. Ideally, one would like
to be able to notice a similarity between
"Chevrolet" and "shevrolay". An ap-
proximation to syllable division was
made by mapping consonant-vowel
pairs. The syllables in "California" by
this method were ca li fo ni. Similar
sounding consonant-vowel pairs were
mapped together. As the reader might
expect, this feature was not wildly suc-
cessful, but it is certainly an interesting
idea which deserves further considera-
tion.

SPELL in The
Stiff Upper Lisp

The last spelling correction algorithm I
will present is the one that is included as
a built-in function in The Stiff Upper
Lisp. The algorithm is a variation on
the algorithm for spelling correction in
Interlisp. The algorithm compares an
unknown word to successive members
of a candidate list of known words. It
differs from the other two algorithms
presented here in that it is assumed that
the unknown word is certain not to be
an exact match to any dictionary word.
The check for an exact match is made
immediately when any word is read in-
to Lisp.

As the unknown word is compared to a
candidate, on a character by character
basis, demerits are accumulated for
disagreements. When the ratio of de-
merits to the length of the unknown
word gets higher than a threshold, the
unknown word is proclaimed not to be
a match for the current candidate.
Comparison fails at that point. If the
unknown word and candidate word
compare each character without accu-
mulating too many demerits relative to
word length, they are proclaimed to
match.

The kinds of disagreements between
words that are likely to be generated
from spelling errors do not cause de-
merits. The acceptable disagreements,
as with the above algorithms, are as

Lifelines/The Software Magazine, May 1982io

through SPELL for the four words clos-
est to the correct spelling in the diction-
ary. For example, "accomodate" is a
misspelling of "accommodate". I look-
ed "accommodate" up in the dictionary
and found the two words before it ("ac-
clivity" and "accolade") and the two
words after it ("accommodating" and
"accommodation"). The misspelling
"accomodate" was then compared with
these four close words. The results
were that only three of the misspellings
matched close words, out of 88 com-
parisons (3%).

I think these results seem a little too
good. A differently designed test may
have come out differently, and the sam-
ple is not very large. Besides, the tests
are simply to give a feel for how well
the algorithm works, and perhaps that,
at least, has been accomplished.

Conclusion

or noun (the "y" suffix suggests an ad-
jective). The same is true for "toves"
(the "s" suffix suggests a noun), but
since it preceeds the verb "did", "toves"
must be a noun. "Gyre" and "Gimble",
coming after "did" are probably both
verbs. "Wabe", since it follows "the" is
a noun or adjective, but because it ends
the sentence, it must be a noun. With
these restrictions, an unknown word
need only be compared to the lists of
nouns, verbs, or whatever is appropri-
ate. Further restrictions can be added if
meanings are taken into account. In the
sentence,

I had a fried glerk for breakfast,

not only can we guess that "glerk" is a
noun, but that it is a kind of food. Of
course, there comes a crossover point
where the effort required to further re-
strict the list of candidate words is
greater than the effort required to
check them. In many situations, how-
ever, this kind of information is already
available, and it must only be used.

How Well Does
SPELL Work?

follows. In the SPELL function, more
than one error can be corrected in the
same word.

1) transposed letters
2) single letter errors
3) single omissions
4) stuttering (repeated characters)

When the current character of the un-
known word does not match the cur-
rent character of the candidate word,
the immediate environment of the dis-
agreement is examined to see if one of
these four acceptable errors is the cause
of the disagreement. If so, no demerits
are given. If not, a demerit is given.

In the actual implementation, comput-
ing the demerits to length ratio and
comparing that result to a threshold of
disagreement would be unduly ineffi-
cient. Instead, when the spelling cor-
rection routine is entered, an integer
(called the grace) is computed which in-
dicates how many demerits can be ac-
cumulated before a match to a candi-
date word is rejected. All unknown
words start off with a grace that de-
pends upon their length. Words of nine
characters or more have an initial grace
of four. Five to eight characters are
given a grace of three, less than five get
a grace of two. Before a character-by-
character comparison of the unknown
word with a candidate, the difference
in length between the unknown and the
candidate is computed and subtracted
from the grace. If the resulting value of
grace is less than one the candidate is
rejected. Otherwise, character by char-
acter comparisons begin, and after
each one the grace is checked. If it falls
below one the candidate word is re-
jected.

This kind of spelling correction is
designed to be used by Lisp program-
mers. It would be most effective in a
dynamic environment in which the list
of candidate words may change radi-
cally from moment to moment, but at
any particular point in time, the list is
relatively small. An example of its use
is in natural language understanding
programs. In the sentence,

The slithy toves did gyre and gimble
in the wabe,

the list of candidates for the unknown
words can be restricted by their appar-
ent lexical classes (noun, verb, adjec-
tive, etc.). "Slithy" must be an adjective

Spelling Correction is a relatively sim-
ple process, as well as being fairly im-
pressive. For a small amount of coding
effort, a spelling corrector can add
enormously to the convenience and ap-
parent intelligence of an interactive
program.

References

It is difficult to describe how well a
spelling corrector works. What we
would like to see it do is correct all and
only those misspellings that a human
would correct. To give some idea of
performance, short of testing a collec-
tion of people and comparing that to
SPELL, I have done some quick tests. I
include both the results and the test
data, so the reader may judge the valid-
ity of the tests for himself.

To determine how well SPELL corrects
misspellings, I located a list of the hun-
dred words most commonly misspelled
in one study of college freshmen. I gen-
erated misspellings for these words
(only the correct spellings were pro-
vided), and ran them through SPELL.
Out of 104 words, 87 were accepted
(84%). Of course, a higher percentage
could be had if the algorithm were
made more forgiving of errors. The dif-
ficulty with this is that more inap-
propriate words would be accepted as
misspellings. I invite the reader to
peruse the list of words. (See Table 1.)

The subject of the second test was to
determine if the algorithm is too loose.
I took a sampling of the misspellings
from the last test, then ran them

The Stiff Upper Lisp is available under
CP/M from Lifeboat Associates (1651
Third Avenue, New York 10028) and
under TRSDOS from Tennant and Ten-
nant Computing (3537 Ridgemoor
Drive, Garland, Texas 75042.)

Gorin, Ralph. Spelling Check/Correc-
tion Program. Program documenta-
tion. Available from DECUS. March 4,
1971.

Tenczar, P.J., W.M. Golden. Spelling,
Word and Concept Recognition. Com-
puter-based Education Research Labo-
ratory, University of Illinois, Urbana,
Illinois.

(continued on page 48)

Lifelines/The Software Magazine, Volume II, Number 12 11

Features

On TURBODOS
Ron Fowler

ware. The system mentioned in the Mi-
crocomputing article suffered from
what I considered a glaring deficiency:
the operating system provided was
standard CP/M itself, with a special
program running in the master proces-
sor to provide support to the slaves. I
strongly felt that this new hardware
concept should have an operating sys-
tem that was designed with networking
in mind, although I doubted that such
an operating system would be at all
CP/M compatible4.

During our research, we found a com-
pany in Tustin, California (MuSys
Corp .) selling a similar system, running
a real network-oriented operating sys-
tem which it called MuDos. It turned
out that MuDos was being offered by a
number of manufacturers, including
Industrial Micro-Systems, under the
name TURBODOS. The operating sys-
tem was produced by a company called
Software 2000, based in Los Alamitos,
California.

The slave CPU boards sold by MuSys
contained a full 64K of memory, a serial
port for the console terminal, and a net-
work port for communications with
the S100 master CPU.

We again ordered documentation, and
called several MuSys customers, all of
whom responded favorably when
asked their opinions of the system.
Since MuSys Corp, would provide the
disk drivers for the Morrow M26
(which we already had on order), we
decided we had found our system, and
placed an order for the full networking
version of the operating system. We
also ordered two slave microcom-
puters, one of which was the newly-
developed Net-82, providing an extra
64K of memory (two banks), a vec-
tored interrupt controller, and an op-
tional floating point math processor.

I should point out that, since we had to
interface this new equipment to our ex-
isting hardware, there was some soft-
ware development work necessary to
bring the system up. For example, the
system had to read and write our DJ2D
floppies, as well as communicate with

This article is intended to acquaint the
reader with a relatively new disk oper-
ating system for the Z80: TURBO-
DOS. It is not a review in the strictest
sense (although I'll pass on my opinions
where appropriate), but will instead
stress the functional characteristics of
the system that will, hopefully, be
helpful in making a decision when se-
lecting an operating system.

I'll begin with a chronicle of events that
led to my own involvement with TUR-
BODOS, and continue with a short
overview of the system and its capabili-
ties. From there, Ill discuss the system
in more detail, touching on each major
feature incorporated in TURBODOS,
along with a look at each of the major
system utilities provided. A short dis-
cussion about potential problems that
may be encountered will follow, along
with a look at long-range plans for the
operating system revealed in a conver-
sation with the author of the system. I'll
conclude with a short description for
programmers.

Background

as much use as possible of the existing
Z80 system. The proposed system
would have to accommodate a mini-
mum of three users, with possible ex-
pansion to as many as five or more. A
high priority was given to assuring a
relatively low per-user expansion cost,
after the initial investment. Yet another
consideration was the need to run our
existing CP/M software (WordStar,
our invoicing program, and a number
of others) on the new system. All in all,
this was a rather formidable set of re-
quirements to build around an 8-bit
processor!

We initially investigated several multi-
user systems, among them MP/M,
OASIS, and ALTOS. For software
compatibility reasons, the field was
narrowed down to MP/M. We ordered
system documentation, and made ar-
rangements to visit some local MP/M
sites. Our findings were rather disap-
pointing; we found that MP/M re-
sponse time suffered greatly with only
a few users. Printer spooling1 ran at a
low priority, which caused background
printing to stop entirely for long
periods of time. There were (at that
time) no provisions for file-lockout 2.
Finally, it seemed we would also have
to spend a considerable amount of de-
velopment time extending our CP/M
BIOS for use under MP/M.

It was around this time that an article in
Kilobaud Microcomputing3 caught my
eye: it was a comparison of multitask-
ing versus multi-processor systems. An
important point of the article was that
complete single-board computers were
being manufactured that plugged into
the S100 bus. These boards were not
bus masters, in that they appeared on
the bus only as I/O ports (although an
expansion board would allow one of
these slave computers to become the
master processor, so that a complete
system could be built around this hard-
ware). The hardware could be pur-
chased either as a complete system, or
as single circuit boards, the latter being
more suited to our needs.

We then began making inquiries of var-
ious manufacturers of this type of hard-

When I began work for my present em-
ployer (Willens-Michigan, a Detroit-
based typesetting firm), the only soft-
ware development system available for
my use was a Z80-based S-100 ma-
chine, which had been purchased origi-
nally to automate the company invoic-
ing process. At the time I began using
the machine, it was being used more
and more for secretarial word process-
ing needs, and available machine time
was diminishing. Within a few months,
it became obvious to my employer
that, in order to make effective use of
my time, another computer would
have to be purchased just for software
development. Further, there was the
probability that the applications pro-
grams I was developing would require
yet another machine.

In order to make best use of the already
sizable investment in equipment, the
company assigned me the task of inves-
tigating currently available multi-user
systems, with the objective of making

Lifelines/The Software Magazine, May 198212

an IBM card punch, a PMMI modem,
and our NEC daisy-wheel printer. For-
tunately, driver specifications are pro-
vided with the system documentation,
and I had most of the necessary drivers
written by the time all of our compo-
nents arrived. After a couple of eve-
nings of debugging, we were able to put
TURBODOS "on the air", a master
operating system that communicated
with our peripherals, the network, and
our M26, slave operating systems for
each of the slave CPUs, and an OS
loader program (provided with TUR-
BODOS, and configured by the user)
to bring the system up.

We have had the system running for
about six months now, and we're
pleased with its capability. We've had
no reliability problems, aside from a
slight problem with the Net-82 CPU
(which was quickly replaced by
MuSys; they shipped a new Net-82 as
soon as we notified them of the prob-
lem and before we sent the old board
back). Further, the software is well-
supported, both by MuSys and Soft-
ware 20005.

a running program6.

User numbers are displayed in the
system prompt, and 32 user areas are
supported. The copy utility provides
full support between user areas. Also,
users logged in as "non-privileged"
may not change the current user num-
ber by any means.

Other features include attaching the
slave console to the master processor,
the ability to manually queue files for
printing, a rudimentary mailbox facil-
ity using FIFO files, a disk verify utility,
and automatic reset-and-download for
a "crashed" slave.

All of these features will be detailed in
the paragraphs to follow.

Documentation

on the boot-up disk) and remains resi-
dent until the next cold start-up. Also,
since disk buffer sizes may be specified
by the user, it is possible to read the disk
without interleaving the sectors, result-
ing in a vast speed improvement.

The amount of disk buffer space may
be changed dynamically using a system
utility, so free memory can be used effi-
ciently while speeding up disk opera-
tions. Also supported is a program load
optimizer, which scans the disk alloca-
tion map to determine the contiguous
sections of a program on the disk, then
loads these sections in the most efficient
order.

TURBODOS may be configured as
multi-tasking (in fact, this is necessary
in the network master), so that many
functions can be performed in the back-
ground. Although the documentation
doesn't help one do this, the informa-
tion is available from Software 2000,
and should be in the next documenta-
tion update.

The system supports logon and logoff
utilities, with usage logging to a disk
file. Passwords may also be specified as
a login parameter.

Among the file attributes supported are
the SHARED and EXCLUSIVE attri-
butes, to control simultaneous access
by more than one user. A file may also
have a FIFO attribute (I'll explain that
one more fully a little later), a GLO-
BAL attribute, and an ARCHIVED at-
tribute (this is supported by the COPY
utility, to allow flexibility in backing up
large disk systems). The only CP/M
compatible attribute is the read-only
attribute. All attributes may be set or
reset from high-level languages sup-
porting a rename-file function, using
special characters in the rename fields.

TURBODOS supports file interlocks at
both the file and record levels. A
unique record-locking capability
allows locking declaration from any
high-level language that can manipu-
late disk files.

The system includes a batch processor
similar to the CP/M SUBMIT utility,
but with enhanced capability. In addi-
tion, the console command processor
allows multiple commands to be en-
tered on a command line, separated by
backslant characters. System calls sup-
port the command line processor, and
allow command lines to be passed from

TURBODOS comes with two typeset
manuals, a User's Guide and a Config-
uration Guide. The User's Guide docu-
ments all system features and utilities,
contrasts the use of TURBODOS with
that of CP/M, and contains an exten-
sive theory of operations section. This
guide also contains specifications for all
of the BDOS system calls (there are
about 87 of them, including 47 not
available with CP/M).

The Configuration Guide provides
complete instructions for using the sys-
tem generation tools, in addition to
providing an informative section de-
scribing the modular construction of
the operating system. Additionally, the
specifications for any user-supplied de-
vice drivers are contained here, along
with a tutorial on data structures used
by TURBODOS drivers, such as linked
lists and semaphores. A set of sample
driver listings is also included.

The basic manual set was written for
revision 1.0 of TURBODOS; the addi-
tional system revisions (1.14 is the cur-
rent version) are documented in the
form of supplements to the original
manuals. Software 2000 is in the pro-
cess of re-writing the manuals, and
should have them available with the
1.2 release (expected sometime in
May).

System Generation

The remainder of this article will be
devoted to a detailed overview of the
TURBODOS operating system.

TURBODOS Features

TURBODOS supports up to 16 disk
drives, ranging from single-density
floppies to hard disks in excess of 1000
megabytes per drive. Files may range
up to 134 megabytes in length.

Additionally, the system supports up to
16 printers per CPU, and utility pro-
grams are provided for manipulating
the various printers and printer modes.

Networking versions of TURBODOS
may be configured, as either network
masters or network slaves. As many as
16 slaves may be serviced by one
master.

Full printer spooling and despooling is
supported for up to 16 printers, both
through utility programs, and ex-
tended BDOS calls. Sixteen communi-
cations channels are also supported for
modems, inter-system channels, links
to peripheral devices, etc.

No system tracks are required on any
TURBODOS disk, since the operating
system is loaded once (from a disk file

I should preface this discussion by
noting that an initial implementation of

(continued next page)
Lifelines/The Software Magazine, Volume II, Number 12 13

ity in module selection. Since all mod-
ules use the Microsoft relocation for-
mat, there is a wide selection of assem-
blers from which to choose.

Curiously, the supplied source modules
require the TDL/XITAN series of as-
semblers (now available from CDL
Corp., and Phoenix Software Associ-
ates, Ltd.), one of the few relocating
assemblers for the Z80 that does NOT
produce Microsoft-compatible relocat-
able modules. For this reason, a utility
program is provided (RELCVT.COM)
to translate the TDL-format modules to
Microsoft format.

Once all the necessary modules are
present on the disk, the physical
operating system is generated using a
program called GEN.COM, which is in
fact a linkage editor. The GEN program
takes command-line arguments speci-
fying a file that contains the system
generation instructions (a ".GEN" file,
and optionally a ".PAR" file, which
allows modifying individual operating
system parameters), the name of the
output file (which will contain the con-
figured operating system), and any op-
tions, such as "M", which produces a
load map, and "S", which produces a
symbol table.

GEN.COM must be used to produce at
least two files to bring the system up:
OSLOADER.COM and OSMAS-
TER.SYS, the operating system loader
program, and the master operating
system, respectively. Additionally, one
slave operating system for each TYPE
of slave must be present at load time.
For example, if all slaves are identical,
the file OSSLAVE.SYS should be pres-
ent on the disk. If different slaves re-
ceive different versions of the slave op-
erating system, slave "A" would re-
ceive "OSSLAVEA.SYS", slave "B"
would rece ive "OSSLAVEB.-
SYS", and so on. A table within the
master operating system may be modi-
fied to specify which slave gets which
operating system.

This technique provides for very easy
modification and re-configuration of
the system, since the included modules
can be re-defined by modifying the as-
sociated ".GEN" file with a text editor.
Operating system parameters, like
number of printers (up to 16 printers
are supported), buffer-flush delay
time, drive step-speed, etc., can be spe-
cified by editing the associated ".PAR"
file. In fact, the .PAR file can be used to

modify ANY global symbol in any of
the system modules.

Networking

TURBODOS will require CP/M (or
some compatible derivative) in order to
run the development tools used for sys-
tem generation. This, of course, does
not apply when the hardware and soft-
ware is purchased from a dealer as a
completely integrated package.

TURBODOS is a modularly-con-
structed operating system with each
system function contained within a
relocatable module. For example, there
are modules for such things as file
management (called FILMGR), disk
management (a module 'closer" to the
disk than the file manager, called
DSKMGR), a disk buffer manager
(BUFMGR), a program loading opti-
mizer (FASLOD), a console manager
(CONMGR), and others. These are ex-
amples of what Software 2000 calls
"kernel-level" modules, meaning they
are within the bounds of the operating
system. In addition there are "process-
level" modules, which are outside of
the operating system (meaning that
they are concurrent processes, and run
simultaneously with other programs,
competing for CPU time). Among
these are the LCLUSR module (sup-
ports a transient program area in a net-
work ing master processor) , the
NETSVC module (handles network
I/O requests from slave processors),
the DSPOOL module (handles printer
despooling). Finally, there are driver-
level modules, which are hardware-
specific sections, such as CONDR (the
lowest-level console I/O handler) and
DSKDR (disk driver). These are collec-
tively similar in function to the CP/M
BIOS.

The kernel and process level modules
are not supplied independently, but are
grouped into several different relocat-
able files, each of which is a function-
ally distinct version of the operating
system. There is a version called
STDMASTR, the master networking
system; another is called STDSINGL,
and is a single-user system; the third is
STDSPOOL, a single user version with
spooling. There are also groups of
modules for slave operating systems,
and boot loaders.

The driver level modules exist indepen-
dently; that is, they are not grouped
into a single 'library" file, as are the
kernel and process level routines, and
are supplied also in source form. They
can be freely modified by the user and
linked into the system at system gene-
ration time, allowing complete flexibil-

One of the key features of TURBO-
DOS is its networking support. Up to
16 slaves may be associated with one
master, allowing full access from each
slave to all of the facilities (disk,
printers, communications channels,
etc.) of the master.

The network interface drivers are sup-
plied with the system, but can be used
only with the slave hardware from the
dealer. If you want to interconnect the
various computers you already have,
be ready to write some drivers. This is
difficult, because the network require-
ments are not specified in the manuals
(network specifications are promised
from Software 2000 for the next re-
lease). It should be possible, however,
to use the supplied drivers as a guide in
writing customized network drivers.

A utility program (MASTER.COM) is
provided to allow any slave to attach
its console to the master over the net-
work. This allows a rudimentary multi-
programming capability, since it's pos-
sible to start a job in the master proces-
sor, detach from the master, then run
programs simultaneously in the local
slave.

Currently, slave-to-slave communica-
tion is not supported, nor is master-to-
master. Word from Software 2000 is
that such communications are planned .

Printer Spooling

TURBODOS supports a very versatile
printer spooling/despooling scheme.
As many as 16 printers are supported,
and flexibility in printer options is pro-
vided via three system utilities: PRINT,
PRINTER, and QUEUE.

The PRINT utility allows you to con-
trol the routing of the printer output
(that is, where the print characters are
sent to). The normal, and most effici-
ent, routing is to a "printer queue",
which is a numbered disk file. These
files are scheduled for printing on a
first-in first-out basis, and are normally
deleted at the completion of printing.
Queues are designated "A" through
"P" and may be associated with a par-
ticular printer. For example, the queue

Lifelines /The Software Magazine, May 198214

file by number, in a fashion similar to
that of CP/M's SUBMIT utility. Unlike
SUBMIT, the argument is specified in
the DO file by enclosing it in braces.
Further, command line arguments may
contain embedded spaces, as long as
the entire argument is enclosed in
quotes.

Another difference between DO.COM
and CP/M's SUBMIT.COM is that a
temporary disk file is only created if ar-
guments are specified within the DO
file. If none are specified, TURBODOS
reads the DO file directly. Also, a
default argument may be specified
within the DO file, for use if no argu-
ment is provided within the command
line. For example, the DO file line "L80
{1} {2,MYLIB}" defaults the file
"MYLIB" if no argument #2 is specified
in the DO command line.

A running DO file supplies input for
more than just system commands; in
fact, the DO file specifies ALL console
input with the exception of direct con-
sole I/O (using BDOS function 6). For
example, the following is a valid DO
file:

DDT
D0,7F
TC
ED FOO.BAR
ICALL FIMPTZQ

One problem results from this capabil-
ity: if a running program polls console
status to determine if an abort charac-
ter is waiting at the keyboard, the en-
tire do file will be diverted to the pro-
gram, since, when console status is
found TRUE, the program must con-
sume the waiting character to deter-
mine if it is the break character. A
notable example of this is the TDL as-
sembler. A possible improvement,
therefore, might be the ability to return
console status false via a special charac-
ter within the DO file.

DO files may be nested to any depth 7;
this means that a DO file may contain
any number of imbedded DO com-
mands.

DO files may be activated by a user
program using a BDOS call, with a
pointer to the DO file name as an argu-
ment. , . .

I n i l I I H l h I i I
■F” .41

(continued next page)

("PRINT QUEUE = B"). During this
time, any kind of printing may simulta-
neously take place on the draft printer,
with no conflict.

The third utility, called "QUEUE",
allows files to be manually marked for
despooled printing, and command line
options may be used to specify queue
assignments, confirmation of individ-
ual files (for use with wild-card file-
name specifications) and automatic de-
letion after printing. For example,
"QUEUE *.PRN ;YDQ=C" will post
all of the files with the filetype "PRN"
to queue "C"; each file will be presented
for confirmation before posting, and
each will be deleted after printing.

It should be noted that all of these
printer functions are available for pro-
grammatic access through BDOS calls,
allowing the programmer complete ac-
cess to any of the spooling and despool-
ing modes.

Communications Channels

file ''TRINT-A.001" is the name of the
first file in the "A" queue, while
"-PRINT-B.003" is the third file in the
"B" queue. While this may seem con-
fusing, it allows full flexibility in
assignment of queues to printers, and
permits a distinction between different
kinds of output. For example, output
requiring a special invoice form may be
separated from output requiring a form
for shipping, and each may be queued
to any printer at a later time.

The PRINT utility also allows print
output to be sent directly to any printer
(locally, to a printer connected to the
slave, or remotely, to one connected to
the master), to the console, to a "null"
printer (i.e., print output is discarded),
or to a disk file (without queueing). The
program may also be used to display
the current print routing.

The PRINTER utility controls the print
destination. This program provides the
means of assigning queues to printers,
taking printers offline, temporarily
halting a print job, or permanently ter-
minating one. For example, the com-
mand "PRINT B QUEUE =C" assigns
local printer "B" to queue "C".

A good illustration of the use of these
utilities is a typical inventory system,
where one clerk is handling requisi-
tions, and another inventory reports.
Further, let's say there are two printers,
"A" (a draft-quality printer, suitable
only for rough work) and "B" (a letter-
quality printer). Both clerks require
letter-quality output for their respec-
tive reports, but a secretary is currently
using the letter-quality printer for de-
spooling form letters. In this case, the
system manager has permanently as-
signed (via a system generation option)
the requisitions clerk (or more ac-
curately, his slave processor) the "A"
queue, the inventory reports clerk the
"B" queue, and the secretary the "C"
queue. Each employee may perform his
function, without worrying about
what kind of form is currently loaded
into the printer, since the output of each
is being saved in a disk queue. When
the secretary has completed the form
letters, the requisitions clerk can then
load the requisition forms into the
printer, assign the printer to his queue
("PRINT QUEUE=A") and his accu-
mulated output will then be taken from
the disk queue and printed out. The
clerk doing inventory reports may later
on load his report forms into the printer
and assign his queue to be printed

TURBODOS supports the concept of
communications channels through
BDOS calls. These channels may be
used for such things as modems, serial
ports to various peripherals, or data
channels between systems. There may
be up to 16 channels in each slave or
master. These channels are defined by
device drivers contained within the op-
erating system, and are completely de-
finable by the user.

Slaves may access the communications
channels of the master over the net-
work. This permits a very convenient
means of communication between the
master and the slaves.

BDOS calls for use with communica-
tions channel access include functions
to set baud rate, return channel status,
set modem controls, and read modem
status.

Batch Processing

TURBODOS comes with a batch pro-
cessing utility (similar to SUBMIT of
CP/M) that allows system commands
to be taken from a disk file. This pro-
gram is called DO.COM, and provides
some interesting features.

First of all, command-line substitution
arguments are specified within the DO

Lifelines/The Software Magazine, Volume II, Number 12 15

File Interlocks This type of file is useful for communi-
cating between processes and between
users, and is created using a utility
called FIFO.

The primary significance of a FIFO file
is in the way sequential reads and
writes act on the file: a record written
to a FIFO file is always appended to the
end of the file, while a record read is
taken from the beginning (and then re-
moved from the FIFO entirely). Ran-
dom reads and writes work exactly the
same with FIFO files as they do with
regular files.

A FIFO file may be resident either on
disk or in main memory of the master
processor. Naturally, the memory-resi-
dent FIFO file can be accessed at speeds
far in excess of the disk-resident FIFO.
The type of the FIFO is specified by
answering a query by the FIFO utility.
An additional specification to the FIFO
utility is the size of the FIFO: disk resi-
dent FIFOs may be any size up to the
capacity of the disk; memory-resident
FIFOs are limited by the available
memory space in the master processor.

Two other utility programs provide a
rudimentary mail system using FIFO
files. The SEND utility posts a message
contained in its command line to a spe-
cified FIFO file; the RECEIVE program
reads a message from a FIFO and dis-
plays it on the console.

The SEND utility may be used in com-
bination with the AUTOLOAD and
DO facilities to force command lines to
idle slave processors. The actual imple-
mentation is a little awkward, but does
provide an effective means of sending
jobs out to slave CPUs as a kind of
background processing.

An interesting (and quite useful) fea-
ture of FIFOs occurs when the FIFO file
has the "shared" file attribute set: if a
process attempts to read such a FIFO,
and the FIFO is empty, the reading pro-
cess is blocked until until a record is
available at the FIFO. Similarly, a pro-
cess writing to a full FIFO is blocked
until a record is taken (read) from the
FIFO. If the "shared" attribute is NOT
set, then reading an empty FIFO re-
turns an end-of-file condition; writing
to a full FIFO returns a disk full condi-
tion.

Applications for FIFOs can best be il-
lustrated by the following example,
which is taken from a real situation en-

countered in my work with TURBO-
DOS.

We have a serial source of input that
must occasionally be read by our mi-
crocomputer; the device is connected
to a spare serial port in one of the slave
processors in our system. Normally,
files from this source do not exceed 25
or 30 Kbytes, so we've always been
able to buffer the incoming data in
memory until the input is exhausted,
then write the memory buffer to disk.
Recently, a customer requested that we
process a large job (in excess of 200
Kbytes) with this device.

This presents a problem typical of non-
real-time microcomputer operating
systems: namely, how to write a buffer
to disk without losing incoming serial
data. From a slave CPU, disk writes
(even though they take place over the
network, and are not actually per-
formed by the slave processor) stop the
slave processor until the write has ac-
tually taken place, and a result (error or
no-error) can be returned to the slave
processor. Further, at the speed at
which our transfer must take place, this
required a delay amounting to between
10 and 20 character times per sector
(i.e., 10 or 20 characters would be lost
each time a sector was flushed to disk).

We found the solution to the problem
using a background process in the mas-
ter processor. This process loops read-
ing the FIFO file "LOGGER. FIL",
which is a memory-resident (high-
speed) FIFO with the shared attribute
set; when there is nothing posted to
LOGGER.FIL, the process is blocked
from execution. When a record is writ-
ten to LOGGER.FIL, TURBODOS
"wakes up" the background process,
and sends it the FIFO record. The first
record posted to LOGGER.FIL con-
tains the filename, disk drive, and user
number of a to-be-created file where
the incoming records will be posted.
The background process reads this
header record, sets up the requested
file, then loops, reading records from
LOGGER.FIL; subsequently it posts
the records to the requested file, until
an end-of-file mark is encountered. At
that time it closes the created file, and
begins the process all over again.

The slave processor, in the meantime,
writes the incoming data record-by-
record (after posting the initial header
record with filename, disk drive and
user number, as specified in the pro-

(continued on page 44)

An important requirement of a multi-
user operating system is the need to
synchronize access to certain files via a
lockout scheme2. TURBODOS pro-
vides this capability in two ways:

1) Write interlock: Any user writing to
a file gains exclusive write-access to
that file; attempts by any other user to
write to that file returns an error code.
This technique provides for one (and
only one) 'updating" process, with
many "inquiry" processes. This means
of interlock is automatic, and requires
no explicit action on the part of the user
or the programmer.

2) Record-level interlock: This feature
is applicable to files with the "shared"
attribute SET. A process gains a rec-
ord-level interlock by opening (or
creating) the pseudo-file "$.LOK"
(which is really not a file at all, but
rather a signaling mechanism). Subse-
quently, any records read by that pro-
cess become locked, until that record is
re-written. Any other process attempt-
ing to write a locked record fails in
either of two ways:

A. If the conflicting process has not
itself opened $.LOK, then it is
blocked (removed from the system
ready list) until the record becomes
available.

B. If the conflicting process has
opened $.LOK, then an error mes-
sage is returned.

Any number of records in any number
of files (all must have the shared attri-
bute SET) may be locked concurrently.
A process may release all locked rec-
ords at once by closing $.LOK.

Notably, record-level interlocks may
be specified by any existing high-level
language, providing it has the ability to
manipulate disk files. Note that while
MP/M II provides for file interlocks,
this feature is available only to the
assembly language programmer, at
least until all systems languages are up-
dated to take advantage of the inter-
lock features.

FIFO Files

TURBODOS provides a special type of
file called "FIFO" ("first-in-first-out").

16
Lifelines /The Software Magazine, May 1982

Features

Bit Manipulation In PL/I-80,
Part 2

Michael J. Karas
listing returns a bit (4) value equal to the converted hex ASCII
character value.

The results of the ASCII to hex conversion are shown here.
Each line printed the loop iteration counter followed by the
converted bit string value in two formats. The first format is
in the binary format to show the value returned from the
HEXBIT array indexing algorithm. The second print format
gives the printed bit string in hex notation. This convenience
is nicely provided by the languages' PUT EDIT capability.

1 0000 0
2 0010 2
3 0100 4
4 0110 6
5 1000 8
6 1010 A
7 1100 C
8 1110 E
9 0001 1

10 0011 3
11 0101 5
12 0111 7
13 1001 9
14 1011 B
15 1101 D
16 1111 F

This programming example and the one presented last month
were provided to allow the reader to become familiar with
bit-fiddling in the world of the high level language. However,
the language has a few bit manipulation shortcomings. For
one thing, the SUBSTR function, if used a lot, is quite slow in
operation. Its slowness is due to the general purpose nature of
the built-in function. In addition, fast executing functions
such as bit string shifting and rotation are not directly
available. And finally, if the above example for ASCII to hex
conversion seemed cumbersome, then feel right at home with
me. That technique is also really slow.

The following assembly language listing is a family of exter-
nal entry point definitions that provide some nifty functions
for bit (16) bit strings. There are functions for rotate and shift
"n" places, fast AND, OR, and XOR operations for use on
two bit string parameters. And yes!, I've included two simple
little function routines to make real quick work of converting
ASCII to hex format BIT(4) [actually the first four bits of
BIT(16)] and conversion of the upper four bits of BIT(16) to
an ASCII character.

The routines are all designed as function call entry points.
Parameters are passed by the calling program according to
the scheme..

(continued next page)

(Editors Note: The first part of this article described the
PL/I-80 bit variable types, showing a program using them.)

The programming example shown below is a means to con-
vert ASCII characters to a corresponding BIT(4) string that
'looks" like the hexadecimal form of the original ASCII
character. Note that this is the opposite of the function per-
formed by the PUT EDIT output formatting afforded by the
B4 format capability. This program uses a built-in function to
derive the hex bit pattern for an ASCII character. The INDEX
function as:

index(stringl,string2)

searches string one from the character 1 position and returns
the starting character position where string 2 was found. Zero
is returned if string 2 was not found.

hexbit(index(hexseq,desired_char_variable)))

aschex: proc options(main);
del

/* ascii conversion strings initialized as part of
•com command file */

hexseq char(16) static initial('0123456789ABCDEF'),
hexbit (16) bit(4) static initial('0'b4,'1'b4,'2'b4,

•3'b4,'4'b4,'5'b4,
'6'b4,'7'b4,'8'b4,
•9'b4,'A 1b4, ’B'b4,
'C'b4,'D'b4,'E'b4,
'F'b4),

(i,j) bin fixed(15),
bitstr bit(4),
txt file,
testseq (16) char(l);

/* setup output file for test data */

open file(txt) output print title('txt.dat');

/* build a test pattern string to demo program */

do i-1 to 15 by 2; /* plug even values into
front of string */

testseq(((i-l)/2) +1)=substr(hexseq,i,1);
end;

do i=2 to 16 by 2; /* plug odd values into
back of string */

testseq(((i-2)/2) +9)=substr(hexseq,i,1);
end;

/* the real demo starts here */
do i=l to 16;
bitstr=hexbit(index(hexseq,testseq(i)));
put file(txt) edit(i,bitstr,bitstr)

(col(1),f(2),x(1),b(4),x(1),b4(1));
end;

end aschex;

The program makes use of this function to determine an in-
teger value for a desired ASCII character to be converted.
That is, the sequence '0123456789ABCDEF' has a one-to-one
correspondence between the hex/ASCII character and
resulting INDEX value for a single character. The INDEX
value is used to index an array of the bit (4) values that have
bit string patterns in hex equal to the corresponding subscript.
Note carefully that the index usage will return a 1 value for an
index on the string HEXSEQ if indexed with 'O' but at the
same time the HEXBIT array subscript contains the cor-
responding '0000'B string. The expression form shown in this

Lifelines/The Software Magazine, Volume II, Number 12

The [HL] register pair points to a variable address table in
memory. The variable address table is a set of two byte
memory addresses in a list, one entry for each parameter
in the calling statement parameter list. Each list address
points to the memory location where the entry variable value
is stored. The storage characteristics of each variable are
defined by the entry point declarations in the PL/I program.
It is up to the assembly language program to fetch the right
parameters in the right format for each variable passed.

The assembly routines return their results in the (HL) register
pair if the result is a BIT(16) value. In the case of the hex to
ASCII function, the result is a character value which gets
returned to the PL/I program on the stack.

Definition of the entry points to the assembly language
routines are shown below. The appropriate PL/I-80 declare
statement to properly define the external assembly language
routines as function procedures is given with each example.
In all of the examples a PL/I-80 function invocation sequence
is given to show how to use the function. The following
declare statement is assumed to define the data variables used
in the examples:

del (bstrl ,bstr2) bit(16),
i bin fixed(7),
cstr char(l);

1) RTROT - Right rotate of bit (16) value. Right rotate entry
bit (16) string "n" places where "n" is an entry parameter.

del rtrot entry (bit(16),bin fixed(7))
returns (bit(16));

bstrl=rtrot(bstr2,3);

2) LFROT - Left rotate of bit(16) value. Left rotate entry
bit (16) string "n" places where "n" is an entry parameter.

del bitand entry (bit(16),bit(16))
returns (bit(16));

bstrl=bitand(bstrl ,'0000111100000000'b);

6) BITOR - Logical OR of two bit(16) values. Operation is
done on a bit by bit basis.

del bitor entry (bit(16),bit(16))
returns (bit(16));

bstrl=bitor(bstr2,'0100 *b4);

7) BITXOR - Logical XOR of two bit (16) values. The returned
value is the bit by bit exclusive or of the operands.

del bitxor entry (bit(16),bit(16))
returns (bit(16));

bstr2=bitxor('AAAA'b4,bstrl);

8) BITASC - Bit to hex /ASCII conversion. Returns an ASCII
character that is the ASCII representation of the hex bit pat-
tern in the upper four bits of the entry parameter.

del bitasc entry (bit(16))
returns (char(l));

cstr=bitasc('101000000000000'b); /* CSTR = 'A' */

9) ASCBIT - Hex/ ASCII to bit conversion. The entry ASCII
character is converted to the associated hex nibble value in
the upper four bits of the returned result.

del asebit entry (char(l))
returns (bit(16));

cstr= 1F';
bstrl=ascbit(cstr);

The exact detailed operation of the assembly language is left
for the industrious reader to determine. This file on the disk
called "PLIBITS.ASM" is made into the proper .REL file with
the CP/M system command:

A>RMAC PLIBITS<cr>

The .REL file is later linked to a PL/I-80 program to include
these entry points in the users program.

del Ifrot entry (bit(16),bin fixed(7))
returns (bit(16));

bstr2=lfrot(bstr2,8); /* swap byte positions */

3) RTSFT - Right shift of bit(16) value. Right logical shift en-
try bit (16) string "n" places where "n" is an entry parameter.
The bit 1 position of the string becomes zero filled.

del rtsft entry (bit(16),bin fixed(7))‘
returns (bit(16));

bstrl=rtsft(bstr2,i); /* variable shift count */

4) LFSFT - Left shift of bit (16) value. Left logical shift of entry
bit (16) string "n" places where "n" is an entry parameter. The
string becomes zero filled fron the bit 16 position.

del Ifsft entry (bit(16),bin fixed(7))
returns (bit(16));

bstr2=lfsft(bstr2,8); /* low byte to high byte
zero low byte */

5) BITAND - Logical AND of two bit (16) values. Operation is
done on a bit by bit basis.

title 'pl/i-80 bit manipulation enhancement subroutines'

enhanced bit processing for pl/i-80 provided by nine
assembly language routines, all entry points treated as
pl/i-80 function calls with results returned in an immediate
fashion to simplify user interface to these routines.

entry points include:
1) Right rotate of bit(16) value
2) Left rotate of bit(16) value
3) Right shift of bit(16) value]
4) Left shift of bit(16) value
5) Logical AND of two bit(16) values
6) Logical OR of two bit(16) values
7) Logical XOR of two bit(16) values
8) Bit to hex/ASCII conversion
9) Hex/ASCII to bit conversion

written by:
Michael J. Karas
Micro Resources
2468 Hansen Court
Simi Valley, California 93065
(805) 527-7922

Lifelines /The Software Magazine, May 198218

; b i t (16) va lue s t r i ng to be r igh t sh i f t ed
; b in f i xed (7) va lue number of p l aces to r i gh t
; r e tu rns ,
; r i gh t sh i f t ed b i t (16) va lue as a func t ion ca l l

r t s f t :
c a l l gb i t en t ; fe tch pa ramete r s

r t sh t l :
o ra a ; c l ea r ca r ry for zero f i l l
mov a ,d ; sh i f t top byte
ra r ; . . l sb of D to ca r ry
mov d , a ; pu t h igh byte back
mov a , e ; sh i f t low byte
ra r ; . .moving ca r ry in
mov e , a
dc r b ; dec sh i f t count
jnz r t sh t l ; ? more to do
xchg ; r e su l t to (h l) for r e tu rn
re t

used for en t ry paramete r r e f e r encegene ra l purpose subrou t ines

; ge t byte en t ry parameter to r eg i s t e r (C)

ge tp l :
mov e,m ; low add re s s of parm
inx h
mov d,m ;h igh add re s s of parm
inx h
xchg ;pa rm ptr to (h l) & cu r r en t

; . . nex t t ab le p t r to (de)
mov c,m ; s i ng l e pa rame te r to (c)
xchg ; r e s to re (h l) t ab l e p t r for
re t ; . . nex t parameter f e t ch

; ge t word en t ry parameter to (BC)

ge tp2 :
ca l l ge tp l ; ge t low parameter byte in (C)
inx d ;bump parameter po in t e r

; . . s t i l l va l i d from ge tp l
Idax d ; ge t h igh parm byte va lue
mov b , a ; pu t h igh to (B)
r e t

func t ion number 4: l e f t sh i f t b i t (16) va lue n p l aces

I f s f t

; en t ry ,
; b i t (16) va lue to be l e f t sh i f t ed
; b in f i xed (7) va lue number of p l aces to l e f t
; r e tu rns ,
; l e f t sh i f t ed b i t (16) va lue as a f unc t ion ca l l

I f s f t :
c a l l gb i t en t ; f e t ch pa rame te r s

I f sh t l :
o ra a ; c l ea r ca r ry for ze ro f i l l
mov a , e ; sh i f t low byte
ra l ; . .msb of E to ca r ry
mov e , a ; pu t low byte back
mov a ,d ; sh i f t h igh byte
r a l ; . .mov ing ca r ry in
mov d , a
dc r b ; dec ro t a t e count
jnz I f sh t l ;? more to do
xchg ; r e su l t to (h l) for r e tu rn
re t

; fe tch parameter sequence b i t (16) and b in f i xed (7) masked to
; four p l aces to (DE) and (B) r e spec t ive ly

gb i t en t :
c a l l ge tp2 ; f e t ch our b i t s t r i ng
push b ; save
ca l l ge tp l ;ge t count
mvi a , Ofh ;mask to 16 coun t s
ana c
mov b , a ; count to (B)
POP
re t

d ;b i t s t r i ng to (DE)

; fe tch paramete r sequence b i t (16) and b i t (16) t o
; (DE) and (BC) r e spec t ive ly

gb i tb i t :
c a l l ge tp2 ; fe tch f i r s t b i t s t r i ng
push b ; s ave
ca l l ge tp2 ;ge t second b i t va lue
pop d ; f i r s t parm to (BC)
re t func t ion number 5: b i tw i se and two b i t (16) va lues

pub l i c b i t and

; en t ry ,
; two b i t (16) va lues to l og i ca l l y AND
; r e tu rns ,
; r e su l t as b i t (16) va lue l i ke a func t ion ca l l

b i t and :
ca l l gb i tb i t ; fe tch two parms
mov a ,b ;do top two by t e s
ana d
mbv h , a
mov a , c ;now low two by tes
ana e
mov 1 , a
r e t

func t ion number 1 : r i gh t ro ta t e b i t (16) va lue n p l aces

pub l i c r t ro t

en t ry ,

r e tu rns ,
r igh t

r t ro t :
ca l l gb i t en t

r t ro t l :
mov a , e
r r c
mov a , d
r a r
mov d , a
mov a , e
r a r
mov e , a
dc r b
jnz r t r o t l
xchg
re t

b i t (16) va lue s t r i ng to be r i gh t ro ta ted
b in f i xed (7) va lue number of p l aces to r i gh t

ro ta ted b i t (16) va lue as a func t ion ca l l

; fe tch pa rame te r s

;ge t I sb of low to ca r ry

; ro ta t e top byte
; . . l sb of D to ca r ry
;pu t high byte back
; ro ta te low byte

moving ca r ry in

;dec ro ta te count
;? more to do
. • r e su l t to (h l) for r e tu rn

func t ion number 6 : b i tw i se or two b i t (16) va lues

pub l i c

; en t ry ,
• two b i t (16) va lues to l og i ca l l y OR
; r e tu rns ,
; r e su l t as b i t (16) va lue l ike a funct ion ca l l

b i to r :
c a l l gb i tb i t ; fe tch two parms
mov a ,b ;do top two by te s
o ra d
mov h , a
mov a , c ;now low two bytes
o ra e
mov 1 , a
r e t

; func t ion number 2: l e f t ro ta te b i t (16) va lue n p l aces

pub l i c I f ro t

; en t ry ,
; b i t (16) va lue to be l e f t ro ta ted
; b in f i xed (7) va lue number of p l aces to l e f t
; r e tu rns ,
; l e f t ro ta ted b i t (16) va lue as a func t ion ca l l

ca l l gb i t en t ; fe tch paramete rs
I f ro t l :

mov a , e ; ge t msb of low to ca r ry
r l c
mov a ,d ; ro t a t e top byte
ra l ; . .msb of D to ca r ry
mov d , a ; pu t high byte back
mov a , e ; ro ta te low byte
ra l ; . .moving ca r ry in
mov e , a
dc r b ; dec ro ta t e count
jnz I f ro t l ;? more to do
xchg ; r e su l t to (h l) for r e tu rn
re t

func t ion number 7: b i tw i se exc lus ive or of two b i t (16) va lues

pub l i c b i t xo r

en t ry ,
two b i t (16) va lues to l og i ca l l y XOR

re tu rns ,
r e su l t as b i t (16) va lue l i ke a func t ion ca l l

gb i tb i t

d
h, a

; fe tch two parms
;do top two by t e s

5
x

3
3

x
3

0
(D

O

O
O

K
O

Q
)

;now low two by tes

funct ion number 3: r i gh t sh i f t b i t (16) va lue n p l aces

pub l i c r t s f t

; en t ry

(continued next page)
Lifelines/The Software Magazine, Volume II, Number 12 19

A>PLI BITTST<cr>
A>LINK BITTST,PLIBITS<cr>

; function number 8: convert bit value to hex ascii

public bitasc

; entry,
; bit(16) value whose upper four bits
; are hex nibble converted to a hex ascii representation
; returns,
; resulting char(l) returned as a function call

bitasc:

bittst: proc options(main);

%include 'plibits.del'; /* bring in the bit entry point del */

del
tb (5) bit(16) static init('a5a5'b4,

'5a5a'b4,
11234'b4,
'fedc'b4,
'Oace'b4),

pb (5) bit(16) static init('3333'b4,
'85ac'b4,
'ffff'b4,
*0000'b4,
'f0a5'b4),

(i,j,k) bin fixed(7),
(bita.bitb) bit(16),
string char(16) static init('0123456789ABCDEF'),
syslst file;

open file(syslst) output print linesize(132)
pagesize(57) title('$lst');

do i=l to 5;
put file(syslst) edit(tb(i))(col(1),b);
end;

put file(syslst) skip(4);

do j=l repeat(j*2) whilefj <= 16);
put file(syslst) skip(l) edit('Count Value = ',j)

(col(l),a,f(2));

put file(syslst) edit('PATTERN')(col(1),a);
do i=l to 5;
put file(syslst) edit(tb(i))(x(2),b(16));
end;

put file(syslst) edit('RT ROT ')(col(1),a);
do i=l to 5;
put file(syslst) edit(rtrot(tb(i),j))(x(2),b(16)
end;

put file(syslst) edit('LF ROT ')(col(1),a);
do i=l to 5;
put file(syslst) edit(Ifrot(tb(i),j))(x(2),b(16))
end;

put file(syslst) edit('RT SFT ')(col(1),a);
do i=l to 5;
put file(syslst) edit(rtsft(tb(i),j))(x(2),b(16))
end;

put file(syslst) edit('LF SFT ')(col(1),a);
do i=l to 5;
put file(syslst) edit(Ifsft(tb(i),j))(x(2),b(16))
end;

end;

put file(syslst) skip(4);

do j=l to 5;
put file(syslst) skip(4) edit('Pattern number ',j)

(col(l),a,f(l));

put file(syslst) skip edit('PAT ')(a);

/* pattern */
do i=l to 5;
put file(syslst) edit(tb(i))(x(2),b(16));
end;

put file(syslst) skip edit('DATA')(a);

/* test value */
do i=l to 5;
put file(syslst) edit(pb(i))(x(2),b(16));
end;

/* AND */
put file(syslst) skip edit(’AND ’)(a);

do i=l to 5;
put file(syslst) edit(bitand(tb(i),pb(i)))

(x(2),b(16));
end;

/* OR */
put file(syslst) skip edit('OR *)(a);

do i=l to 5;
put file(syslst) edit(bitor(tb(i),pb(i)))

(x(2),b(16));
end;

/* XOR */
put file(syslst) skip edit('XOR ')(a);

do i=l to 5;
put file(syslst) edit(bitxor(tb(i),pb(i)))

(x(2),b(16));
end;

end;

put file(syslst) skip(4) edit('ASCII Translation')
(col(l),a);

do j=l to 16;

call
mov

getp2 ;get pit string to (BC)
.•position high nibble

rrc
rrc
rrc
rrc
ani Ofh ;low nibble only
adi 09Oh ;use famous 6 byte conversion
daa
aci
daa
Pop

040h

h ;get pli/80 return address
push psw ;char to stack
inx sp ;ignore flags
mvi a,1 ;one char size
push .•return address back to stack
ret

function number 9: convert hex ascii to bit value

public ascbit

entry,
char(l) ascii character value that is
converted to a bit(16) value with the upper four

; bits corresponding to the hex/ascii character
; returns,
; bit(16) value as a function call

ascbit:
call getpl ;get character to (C)
mov a,c
sui 'O' ;base at zero
cpi 010 ;need offset adjust?
jc asci
sui 07h

asci:
ani Ofh ;mask to four bits
rlc ;move to upper nibble
rlc
rlc
rlc
mov h,a
mvi 1,0 ;zero lower bits
ret

end

+++...end of file plibits.asm

The entry point definition given above showed an example
declare statement for each assembly language routine. The
following small file called "PLIBITS.DCL" is a one statement
declare file that is put into the users PL/1-80 program with a
statement like:

%include 1PLIBITS.DCL';

This prevents the programmer from having to retype the
declared entry point definition each time the functions of
PLIBITS is desired. It also saves mistakes.

/* enhanced bit operation performance subroutine
entry point definition */

del
rtrot entry (bit(16),bin fixed(7))

returns (bit(16)),
Ifrot entry (bit(16),bin fixed(7))

returns (bit(16)),
rtsft entry (bit(16),bin fixed(7))

returns (bit(16)),
Ifsft entry (bit(16),bin fixed(7))

returns (bit(16)),
bitand entry (bit(16),bit(16))

returns (bit(16)),
bitor entry (bit(16),bit(16))

returns (bit(16)),
bitxor entry (bit(16),bit(16))

returns (bit(16)),
bitasc entry (bit(16))

returns (char(l)),
ascbit entry (char(l))

returns (bit(16));

A comprehensive test program to show operation of all the
assembly language routines is given below. Once again the
program structure and operation is left for the reader to tear
apart. The listing output from this program is given at the end
of the article. To compile and link the program source con-
tained in "BITTST.PLI" use the commands:

Lifelines /The Software Magazine, May 198220

IMIHUHr
iBiaBiHBiHnnai

put file(syslst) edit(j,ascbit(substr(string, j,
bitasc(ascbit(substr(string, j,1
(col(l),f(2),x(2),b(16),x(l),a);

end;

end bittst;

D) ,
))))

The output from the above shown program is given below.
All functions of the assembly language routines are exercised.

1010010110100101
0101101001011010
0001001000110100
1111111011011100
0000101011001110

Count Value = 1
PATTERN 010010110100101
RT ROT 101001011010010
LF ROT 100101101001011
RT SFT 101001011010010
LF SFT 100101101001010
Count Value = 2
PATTERN 010010110100101
RT ROT 110100101101001
LF ROT 001011010010110
RT SFT 010100101101001
LF SFT 001011010010100
Count Value = 4
PATTERN 010010110100101
RT ROT 101101001011010
LF ROT 101101001011010
RT SFT 000101001011010
LF SFT 101101001010000
Count Value = 8
PATTERN 010010110100101
RT ROT 010010110100101
LF ROT 010010110100101
RT SFT 000000010100101
LF SFT 010010100000000
Count Value = 16
PATTERN 010010110100101
RT ROT 010010110100101
LF ROT 010010110100101
RT SFT 000000000000000
LF SFT 000000000000000

000101011001110
000010101100111
001010110011100
000010101100111
001010110011100

000101011001110
000001010110011
010101100111000
000001010110011
010101100111000

000101011001110
110000010101100
010110011100000
000000010101100
010110011100000

111111011011100
111111101101110
111110110111001
111111101101110
111110110111000

111111011011100
011111110110111
111101101110011
011111110110111
111101101110000

111111011011100
100111111101101
110110111001111
000111111101101
110110111000000

001001000110100
000100100011010
010010001101000
000100100011010
010010001101000

001001000110100
000010010001101
100100011010000
000010010001101
100100011010000

001001000110100
100000100100011
010001101000001
000000100100011
010001101000000

101101001011010
010110100101101
011010010110100
010110100101101
011010010110100

101101001011010
001011010010110
110100101101001
001011010010110
110100101101000

101101001011010
010010110100101
010010110100101
000010110100101
910010110100000

101101001011010
101101001011010
101101001011010
000000001011010
101101000000000

101101001011010
101101001011010
101101001011010
000000000000000
000000000000000

111111011011100
101110011111110
101110011111110
000000011111110
101110000000000

111111011011100
111111011011100
111111011011100
000000000000000
000000000000000

000101011001110
100111000001010
100111000001010
000000000001010
100111000000000

000101011001110
000101011001110
000101011001110
000000000000000
000000000000000

001001000110100
011010000010010
011010000010010
000000000010010
011010000000000

001001000110100
001001000110100
001001000110100
000000000000000
000000000000000

Pattern number 1
PAT
DATA
AND
OR
XOR

010010110100101
011001100110011
010000100100001
011011110110111
001011010010110

101101001011010
000010110101100
000000000001000
101111111111110
101111111110110

Pattern number 2
PAT 010010110100101 101101001011010
DATA 011001100110011 000010110101100
AND 010000100100001 000000000001000
OR 011011110110111 101111111111110
XOR 001011010010110 101111111110110

Pattern number 3
PAT 010010110100101 101101001011010
DATA 011001100110011 000010110101100
AND 010000100100001 000000000001000
OR 011011110110111 101111111111110
XOR 001011010010110 101111111110110

Pattern number 4
PAT 010010110100101 101101001011010
DATA 011001100110011 000010110101100
AND 0100001001 0000000000001000
OR 1011011110110111 1101111111111110
XOR 1001011010010110 1101111111110110

000101011001110
111000010100101
000000010000100
111101011101111
111101001101011

111111011011100
000000000000000
000000000000000
111111011011100
111111011011100

001001000110100
111111111111111
001001000110100
111111111111111
110110111001011

000101011001110
111000010100101
000000010000100
111101011101111
111101001101011

111111011011100
000000000000000
000000000000000
111111011011100
111111011011100

001001000110100
111111111111111
001001000110100
111111111111111
110110111001011

000101011001110
111000010100101
000000010000100
111101011101111
111101001101011

001001000110100
111111111111111
001001000110100
111111111111111
110110111001011

111111011011100
000000000000000
000000000000000
111111011011100
111111011011100

001001000110100 111111011011100 000101011001110
111111111111111 000000000000000 111000010100101
0001001000110100 0000000000000000 0000000010000100
1111111111111111 1111111011011100 1111101011101111
1110110111001011 1111111011011100 1111101001101011

(continued next page)
Lifelines/The Software Magazine, Volume II, Number 12

Pattern number 5
PAT 1010010110100101 0101101001011010 0001001000110100 1111111011011100 0000101011001110
DATA 0011001100110011 1000010110101100 1111111111111111 0000000000000000 1111000010100101
AND 0010000100100001 0000000000001000 0001001000110100 0000000000000000 0000000010000100
OR 1011011110110111 1101111111111110 1111111111111111 1111111011011100 1111101011101111
XOR 1001011010010110 1101111111110110 1110110111001011 1111111011011100 1111101001101011

ASCII Translation
9 1000000000000000

10 1001000000000000
11 1010000000000000
12 1011000000000000
13 1100000000000000
14 1101000000000000
15 1110000000000000
16 1111000000000000

1 0000000000000000 0
2 0001000000000000 1
3 0010000000000000 2
4 0011000000000000 3
5 0100000000000000 4
6 0101000000000000 5
7 0110000000000000 6
8 0111000000000000 7

Volume 80 and Abstracts

CP/M Users Group
Volume 80 The programs on volume 80 were contributed by David E.

Trachtenbarg of Peoria, IL.

Here are a few comments extracted from his very complete
submittal forms:

* They all require Cromemco 32K Structured BASIC

* Most have hardware dependency on a Hazeltine 1500 ter-
minal. The statistical programs have optional plotting rou-
tines that require a dot matrix printer.

Ward Christensen

This disk contains a set of programs that I wish to donate to
CPMUG for noncommercial use. Most are entirely original
programs that I wrote from scratch. Others are based on al-
gorithms that described by others. None have been published
as Structured BASIC programs before to my knowledge.

Although all of the programs work, some still have minor
bugs in them that I know about. All of the programs could be
improved upon.

SMENU.STB, SPELL. STB, CEDIT.STB, DEDIT.STB,
CHECK.DAT, TRANSFER.STB, DICTION.DAT and
WORDLIST. TXT are all parts of a spelling checking pro-
gram. The program was written before the commercial spell-
ing checkers were first marketed. Unlike the commercial
checkers it is very slow, since each word is checked in a ISAM
dictionary file.

A text file containing a short list of common words is also in-
cluded. The program will scan a text file and place all of the
words not in the dictionary in another file to be checked.
After all of the words in the check file have been reviewed
they may be added to the dictionary. The writer must use an

(continued on page 43)
Lifelines/The Software Magazine, May 1982

DESCRIPTION: Cromemco Structured BASIC programs
by David E. Trachtenbarg:

1. Mail list programs.
2. Spelling programs.
3. Statistical programs.
4. Misc. other programs.

NO. SIZE NAME COMMENTS

CATALOG.080 CONTENTS OF CP/M
VOL. 080

ABSTRACT.080 Volume abstract
IK FILES.CRC CRC of files on disk
2K CRCK.COM CRC program.
5K U-G-FORM.LIB CPMUG submission

form.

80.1 2K BACKUP.STB Part of mail list system
80.2 6K CEDIT.STB Part of spelling program
80.3 2K CHECK.DAT Part of spelling program
80.4 8K CONV-ASC.STB Convert MBASIC to

Cromemco
80.5 6K CONV-BAS.STB structured BASIC
80.6 2K DATE.STB Part of mail list system
80.7 10K DEDIT.STB Part of spelling program
80.8 2K DICTION.DAT Part of spelling program
80.9 12K GRADER.STB Text evaluation

program
80.10 4K MMENU.STB Part of mail list system
80.11 2K PRN-TEST.STB Printer test program
80.12 10K REC-EDIT.STB Part of mail list system
80.13 8K REC-PRN.STB Part of mail list system
80.14 2K SMENU.STB Part of spelling program
80.15 8K SORTS.STB Sort routines

22

Features
Developing Applications With
dBASE II

Steve Patchen
the application. Directories seldom provide adequate infor-
mation to users of the system. Tying the parts of the system
together with a menu insures that users have access to the
facilities they need. Data dictionaries can then provide addi-
tional information for system maintenance.

The program which controls the menu is generalized and data
driven. That is, there is only one menu program, but there
can be as many menus as required. The menus are stored in a
data file which can be easily accessed to make additions and
changes. The menu control program and the menu editor
show good examples of the ease and convenience in many of
the higher level commands provided by a new generation of
software. dBASE II is versatile enough to provide low level
support for a wide range of applications. Thus it is possible to
build modules for applications suited to general use and still
have the ability to customize modules in the field for special
requirements. This represents a compromise between un-
modifiable packaged software and expensive custom written
programming. I have selected the menu system for more de-
tailed discussion as a good example of the structure of an ap-
plication developed for dBASE II. The rest of this article will
be devoted to a discussion of the menu system and to the
strategies used in taking advantage of dBASE H's fourth gen-
eration features; the strategies used to build modules de-
signed for construction of applications will also be con-
sidered.

Note that each of the programs and data structures have a
copyright. You may copy the programs for your own use but
please do not copy them in any form for trade or money. I
have also reserved the trademark of DATAWARE for data
driven software created by myself at Dataware Systems.
Please do not remove the copyrights from your own copies.

First let's look at how the menu system works and how it can
be used. Then I will discuss the menu control program, the
menu editor and report routines in more detail along with
some of the dBASE II commands they use. Figure 1 is an ex-
ample run of the system. The menu control program is
started either with a 'DBASE MENU' command from
CP/M-80 or with a DO MENU' command from dBASE II.
The menu displayed is the last one in use unless the system is
being run for the first time. The last date entered in the system
is retained and an opportunity to change it is offered each
time the menu system is entered. After the current menu is
displayed only the characters shown as selections are ac-
cepted as input. Any other entry produces an error message.
The bottom four selections are displayed with every menu.
They are built into the menu control program to allow inter-
action outside the normal menu routing. The '> ' selection
allows any CP/M-80 command to be entered; upon comple-
tion the menu is restored. The '.' selection similarly allows a
one line dBASE II command to be executed. The syntax of the
command line entered is checked with the new TEST() func-
tion to avoid bombing out from an entry error. The '*' selec-
tion allows you to bypass the normal routing through the

(continued next page)
23

We are entering an era in which new forms of program crea-
tion are emerging. Most existing application programs were
created by programmers writing code one line at a time. This
is a slow and costly way to create data processing applica-
tions. Alternative strategies with such names as 'application
generators" and "program building systems" are evolving.
Associated with these new techniques are database systems
and fourth generation languages. These new tools provide
direct access to data and allow many useful manipulations of
data without any programming. James Martin's latest book
"Application Development Without Programmers", pub-
lished by Prentice-Hall, provides a good introduction to
some techniques currently in use. The National CSS
NOMAD' system (Wilton,CT, 1981) discussed in his book is
a relational database system similar to dBASE II. However, it
has a better report facility and other greater powers, partly
because it has a more complex data definition strategy and
also because it was designed for large capacity mainframe
computers.

These tools alone, however, do not solve all the difficulties
which arise in data processing. Some problems become criti-
cal as more applications are added to a data processing site,
such as the loss of the ability to keep track of the current state
of data in the system and the difficulty in making data created
by one application available to another. A tool called a data
dictionary is available on many mainframe computers to ease
these problems. A data dictionary could also be capable of
keeping track of other objects in the system, like program
revisions and report formats. Data dictionaries and database
systems complement each other. The database facilitates ac-
cessing data as a separate entity from programs and the dic-
tionary keeps track of the contents and structures of the data
processing system. These tools are natural prerequisites to
any application creation system.

For the past year I have been working on an application de-
velopment system which includes a data dictionary, a project
management facility and an application build system. The
current version of this system uses dBASE II version 2.03 as a
foundation. The data dictionary is used to contain the ap-
plication design; it also provides supplementary data defini-
tions for screen and report formats and for complex data sets.
The build system includes a menu facility. This menu system
is an essential structure in both the development system and
in applications generated by it.

Menu systems are commonly used in application software.
They are usually restricted in structure to suit the particular
application. Their facilities seldom extend to operating sys-
tem utilities or include the ability to handle other modes of in-
teraction with the user of the system. There is no reason why
a menu system cannot be used as an integral part of the
operating system to provide easy access to the computer for
new and inexperienced users, and still allow lower levels of
operation by the more experienced operator. The same menu
control module is used by both the development system and

Lifelines/The Software Magazine, Volume II, Number 12

menus by entering the two character name of the menu you
wish. The last built-in selection is the z?z character. It causes a
help message for an indicated selection to be displayed.

The other selections in any menu are listed directly from a
data file each time the menu is displayed. The selection
character can be any displayable character, but the menu
editor automatically loads numbers corresponding to the se-
lection position when the menu is first created. If you use one
of the four built-in characters the selection will never be ac-
cessed because the built-in functions take precedence. The
next column of the menu display contains a short forty-
character description of the selection, but a better description
should be placed in the help entry for each selection. The last
column displayed is either the menu or function name for the
selection, depending upon whether it is a menu selection or a
program function. Ten characters are allowed for the func-
tion name to accommodate device designations as well as
eight character CP/M-80 names. The CP/M-80 extension for
functions is always '.CMD' for dBASE II command files and
thus is not shown. The example run shows a routing into the
build system menu and then into the menu system mainte-
nance routines.

I used the SET ALTERNATE TO filename and the SET AL-
TERNATE ON commands to generate the trial run in figure
1. The menu editor does not show the editing screen displays
because, for some reason, screen format displays are not
echoed into the file created. The screen format files for the
editor are listed with the other source files in figure 2. To
clarify things not revealed by the echo of the run and to
economize on space, I have edited the dump a little. Changes
and notes are in parentheses. After doing a help display I
routed through menus to the menu editor. The menu editor
shows you which files are being edited and then asks for the
name of the menu to edit. It tries to locate the menu and
display it for confirmation. If it cannot find the menu re-
quested you are offered an opportunity to create it. You are
asked to enter the number of entries desired in this new menu;
then the program creates it and prompts for you to fill in the
menu entries, using the MENU.FMT screen entry form.
When an 'R' or an 'E' is entered for a command letter the sec-
ond screen format is used to fill in the report or screen entry
parameters for this selection. After leaving, the screen entry
displays a null entry and backs up one step in the program; so
in order to exit you just hit RETURN keys until you are back
in the menu. I left the menu by giving a direct CP/M-80 com-
mand to run WordStar. The shortest route back to the main
entry menu is to use the z*zselection and enter a null to get the
default menu (the first one in the file).

For the following detailed discussion refer to the source list-
ings in figure 2. The menu control module first disables the
ESCAPE key and the interactive talk. It also makes sure that
the screen will be the display destination. The second section
of code is used to insure that the memory variables used by
the control module are loaded the first time the menu system
is run or when changing to another menu system. You can
change to another menu system either by deleting the
MENU.MEM file or by calling a routine which changes the
menu parameters and saves them to MENU.MEM. The
dBASE II commands SAVE and RESTORE are used to save
the memory variables anytime they are changed and to re-
store the system to the menu it had left after doing some func-
tion. The next section of code allows the user to correct the
date if it is required.

The rest of the routine is an infinite do while loop. Most
returns from dBASE II functions remain within this loop. The
top of the loop consists of the menu display. It is in three
parts: the first part is just the menu title; the second part is dis-
played directly from the current menu file; the last part con-
sists of the built-in functions and the column headings. The
last line is a prompt to enter a selection. The WAIT command
displays WAITING' on the screen and accepts one character
from the operator. The remainder of the do while loop is a
response to the character entered.

The entered character is first checked against the four built-in
selections. If is not one of these, the current menu records are
searched for a selection match. An error message is displayed
if it is not found. Otherwise, the action taken depends upon
the content of the COMMAND and the FUNCTION fields in
the record located. The command letter "C" causes the
FUNCTION field contents to be used as a CP/M-80 com-
mand. "D" uses the description. A command letter of M'
causes the first two characters of the FUNCTION field to be
loaded as the current menu name. This then becomes the next
display seen. If the COMMAND letter is an ZF' the FUNC-
TION field contents are executed as a dBASE II command. If
it is either an ZE' or an ZRZthe FUNCTION field from the menu
file is used as a key to locate the record used to get informa-
tion for entry and report routines. The function found in this
file is then executed as a program. All routines called return to
the menu control module and redisplay the previous menu.

The MENUEDIT.CMD takes advantage of the REMARK
command to provide both the program title and the introduc-
tory screen display. The parameters required by the routine
are checked to insure that they are not null. Then the files are
selected, the operator is informed of which files are being
edited and asked which menu he or she wishes to edit. The
program enters a do while loop and does not leave it until the
operator enters a null response to the prompt for a new menu
to edit at the bottom of the loop. If the menu requested is
already in the file the FIND command will locate it; if not the
EOF function will be set true. This causes the ELSE part of the
IF statement, which asks the operator if he wishes to create
the specified menu, to be executed.

The menus are printed using two generalized routines and
one customized for the menus. The report routines use most
of the parameters loaded by the menu system from the report
format file. The form length which I am currently using is for
8 ¥2 " by 14 " paper; I cut it down to 8 1/2 " by 11 " for binders
without breaking the form seams. If you use different paper
just employ a different form length in the MENURPT.DBF
file record for this report. REPORT1.CMD is called by the
menu after loading the parameters. To avoid line wrap-
around on 80 column printers the 132 character RHEADING
string is trimmed down to only the characters you have
entered into it. The menu files are selected, and then the print-
ing takes place within three nested do while loops. The first
loop continues the printing until the end of the primary file is
reached. The second loop makes a paging decision following
the records referenced by the KEYA parameter. The key
group title line is printed and the third loop is entered to print
the associated records. KEYB is used as the secondary key to
select possible multiple records in this loop. PFORMAT con-
tains the name of the routine to use to print these records.
When returning from this routine another paging decision is
made. The PFORMAT routine in our case is MENURPT1.-

Lifelines/The Software Magazine, May 1982

see if the longest message uses all the fields. If it doesn't you
can make a copy of the structure and modify it. Just append
from the original file and rename it. Then don't forget to
remove the appropriate 1 L7 etc. from the MENU.CMD file.
Menus imbedded in programs will run faster then these
menus, but modifications to the menus will require a pro-
grammer and program changes with associated debugging.
This menu system can be maintained by the user of the sys-
tem.

CMD. The routine TOPOFPAG.CMD is called to handle the
paging and top of page heading. It trims the ' _____' line to
match the RHEADER line length before printing it. Before
leaving the routine all the memory variables not needed any
more are released and the paper is ejected out of the printer.
Figure 3 is an example of this report.

REPORT1.CMD is generalized to handle a wide class of re-
ports which print columns of entries. The routine loaded into
PFORMAT can be either a customized routine or another
generalized routine to handle a class of column reports. A
simple such generalized routine would be:

SELECT SECOND
LIST OFF FOR &KEYB$KEYBVAL
SELECT PRIMARY

A composite expression of KEYA and KEYB might also be
used. The DISPLAY or LIST command can be formatted as
in the menu display routine. Another form of report (as for
invoices and purchase orders) would use a file containing the
location of fields to print on preprinted forms. The file would
contain a format key, a series of field names and a line and
column position for each field. These field entries would be
sorted on the format key, on the line and on the column to
make sure they are printed in the proper order. The report
routine would read through this series of records for each
form printed, placing the current values for each field in cor-
rect locations with the '@ line,column SAY &field' com-
mand. If two files are required for the form, as in multiple
item entries, the second file would require another set of for-
mat records for the line items. Only the column position
would be used from the file because the item would be printed
in the current item row. The FIND, LOCATE, LIST and
DISPLAY commands are examples of the difference in power
between dBASE II and similar databases and the cumbersome
methods of performing these common operations in BASIC,
FORTRAN or other older languages. The FIND command is
used with an index while the LOCATE command allows
complex expressions specifying which file record to retrieve.
The macro command is used heavily in these programs;
this feature allows programs to be data driven. Any part of a
command line can be formed as data and substituted into a
program during execution, so that direct CP/M-80 and
dBASE II command selections in the menu are possible, as is
building applications from data specifications. Thus routines
like REPORT1.CMD can be created and used by many
reports. Or molds for programs can be filled in from data files
and .CMD files created with the COPY SDF command.

Keep in mind that databases and data driven software make
heavy use of the mass storage media. Thus the access time
limitations of your mass storage can have a significant effect
upon the performance of the system. To give you some idea, I
compared some times running the menu system from both
my 8 " floppy system and my winchester. The average time to
change menus on the 8 " was 12 seconds but on the winchester
was less then 8 seconds. The menu editor loaded in 9 seconds
from the floppies and in only 3 seconds from the hard disk.
The return to the menu took 10 seconds and 6 seconds respec-
tively. My computer has a 4MHZ Z80 processor. If you have
a 2MHZ 8080 or 5¥4" drives the response times will be
slower. The menu display can be speeded up a little by remov-
ing unused help message fields if desired. I recommend that
you develop the application first and then examine the file to
Lifelines/The Software Magazine, Volume II, Number 12

I have not provided full error trapping in these routines
because dBASE II does not have built-in error trapping facili-
ties and doing the error coding in line with the functions ob-
scures the structure of the routines. There is some error trap-
ping to provide reasonable operation convenience. The
development system of which this is a part provides for both
manual and automated application generation features. As
enough of the system is completed and tested I will provide
further examples of the structure of the system. The parts
needed to complete a minimum system are the build routines
to do file creation, screen formats and report formats.

For those of you who do not wish to type the programs and
structures into dBASE II I will provide copies on 8" single
density diskettes for $45 each. I will include the latest version
of the routines and documentation on the diskette. My ability
to deliver copies is limited, so please only order it if you in-
tend to experiment with these routines and provide some
feedback from your experience with them. Send pre-paid
orders to Dataware Systems, 255 Chippewa, Pontiac, Mich.
48053. Allow 30 days. I will send an acknowledgement of
orders received.

Figure 1 A Menu Test Run

DATAWARE (IM) MENU SYSTEM COPYRIGHT 1982 BY STEVE PATCHEN

CORRECT THE DATE IF REQUIRED 03 /08 /82

(SCREEN IS ERASED)

* 03/02/82 DATAWARE SYSTEMS (TM) *

THE DATAWARE MANAGEMENT SYSTEM (TM)
-------**

A
1 The DATA DICTIONARY Bl

The PROJECT CHART B2 *
The BUILD SYSTEM B3

4 Project in i t ia l iza t ion B4

5 SYSTEM HOUSEKEEPING ROUTINES B5 *
■Jr

> To do a CP/M command* To do a DBASE I I command *

*—
* To go to a MENU not l i s ted by entering i t s name

To see help messages fo r any selection *

* SELECTION DESCRIPTION MENU/FUNCTION NAME *
A***********AAA*AA*****

ENTER A SELECTION CHARACTER!
WAITING ?
ENTER the SELECTION character to get help fo r . : ?

THE ? SELECTION IS USED TO VIEW HELP MESSAGES FOR ANY SELECTION IN THE MENU.

Respond to the prompt with the character for the select ion you wish to v iew.

ENTER any key to continue.
WAITING

(THE ORIGINAL MENU IS REDISPLAYED HERE)

ENTER A SELECTION CHARACTER!
WAITING 3

(SCREEN IS ERASED)

* V 02/82 DATAWARE SYSTEMS (TM) *

THE BUILD SYSTEM

1 Build o r Edit the Menus M0
2 Build data f i les NO
3 Build Reports R0
4 Build entry screens

Build Program modules
RETURN TO THE MAINMENU

SO* 5 P0* 6 A0

> To do a CP/M command
To do a DBASE I I command

*— ?
To go to a MENU not l i s t ed by entering
To see help messages for any select ion

i t s name

* SELECTION DESCRIPTION MENU/FUNCTION NAME *

ENTER A SELECTION CHARACTER!

(continued next page)
25

* MENU.CMD
* 03/09/82
* COPYRIGHT 1982 BY STEVE PATCHEN
* ******** THIS IS THE MENU CONTROL MODULE **********

WAITING 1

(SCREEN IS ERASED)

* 03/02/82 DATAWARE SYSTEMS (TM) *

SET ESCAPE OFF
SET TALK OFF
SET FORMAT TO SCREEN
@ 0,0
@ 1 ,0 SAY " DATAWARE (IM) MENU SYSTEM COPYRIGHT 1982 BY STEVE PATCHEN

* BUILD OR EDIT THE MENUS
*
* 1 Build menus from the dictionary
* 2 Add o r edi t menus
* 3 Delete a program call from al l menus
* 4 Add a program call to selected menus
* 5 Print the menus
* 6 Print the help messages
* 7 RETURN TO THE BUILD MENU

* > To do a CP/M command
* . To do a DBASE I I command
* * To go t o a MENU not l isted by entering i t s name *
* ? To see help messages for any selection *

* SELECTION DESCRIPTION MENU/FUNCTION NAME **
ENTER A SELECTION CHARACTER!

WAITING 2

@ 5 ,0 SAY " ---"
IF FILE('MENU.MEM')

RESTORE FROM MENU
SELECT SECOND
USE &REPORTFILE
SELECT PRIMARY
USE &MENUFILE INDEX &MENUFILE

ELSE
STORE "MENU" TO MENUFILE
@ 3 ,0 SAY 'WHAT IS THE NAME OF THE MENU SYSTEM YOU WISH TO RUN FROM? GET MENUFILE
READ
IF MENUFILE’' '

STORE 'MENU' TO MENUFILE
STORE 'MENURPT' TO REPORTFILE

ELSE
STORE '&MENUFILE'+'RPT' TO REPORTFILE

ENDIF
SELECT SECOND
USE &REPORTFILE
SELECT PRIMARY
USE &MENUFILE INDEX &MENUFILE
STORE DATE() TO MDATE
STORE MENU TO CMENU

ENDIF
@ 3 ,0 SAY " CORRECT THE DATE IF REQUIRED. " GET MDATE PICTURE "99 /99 /99"
READ
SET DATE TO &MDATE
SAVE TO MENU
DO WHILE T

ERASE
FIND &CMENU
? H **ilr*5lc**************ilr***ilr*irilr*ilt**i*rit****************ilr**itirir**ic********ilrilr******* H

? "* &MDATE DATAWARE SYSTEMS (TM) *"
2 11* ---*• i
DO WHILE .NOT. EOF .AND. CMENU$MENU

DISPLAY OFF "* " .SELECT," " , DESCRIPTN, FUNCTION," *"
SKIP

ENDDO
2 ”* *"
? "* > To do a CP/M command *"
? "* . To do a DBASE I I command *"
? "* * To go t o a MENU not l i s ted by entering i t s name *"
? "* ? To see help messages for any selection *"
2 "*---*"
? "* SELECTION DESCRIPTION MENU/FUNCTION NAME *"
2 ”***"
? " ENTER A SELECTION CHARACTER!"
WAIT TO ACTION
DO CASE
CASE ACT1ON=">"

ACCEPT "ENTER the CP/M command." TO LINE
QUIT TO "&LINE","DBASE MENU"

CASE ACTION’"*"
ACCEPT "ENTER the two l e t t e r MENU name that you want .
IF " "$CMENU

GOTO 1
STORE MENU TO CMENU

ENDIF
SAVE TO MENU

CASE ACTION’"."
ACCEPT "ENTER the DBASE I I command. " TO LINE
IF O’TEST(LINE)

? "BAD COMMAND LINE!"
WAIT

ELSE
&LINE

ENDIF
IF FILE ("MENU.MEM")

RESTORE FROM MENU
ELSE

QUIT TO "DBASE MENU"
ENDIF

CASE ACTION’"?" „ _ ,
ACCEPT "ENTER the SELECTION character to get help fo r . TO ACTION
IF .NOT. ACTION’" "

IF ACTION’"?".OR. ACTION’" . " . OR. ACT1ON=">".OR. ACTION’"*"
LOCATE FOR ACTION$MENU

ELSE
LOCATE FOR CMENU$MENU. AND. ACTION$SELECT

ENDIF
IF .NOT. EOF

? LO
? LI
? L2
? L3
? L4
? L5
? L6
? L7
ELSE
? 'THERE IS NO MESSAGE FOR THIS SELECTION.
ENDIF

ENDIF
? " ENTER any key to cont inue."
WAIT

OTHERWISE
SKIP -1
DO WHILE .NOT. SELECT’! (ACTION) .AND. CMENU$MENU

SKIP -1
ENDDO
IF .NOT. CMENU$MENU

? "NOT A VALID CHOICE. PRESS ANY KEY TO CONTINUE. "
WAIT

ELSE
STORE FUNCTION TO MFUNCTION
DO CASE
CASE COMMAND="C"

ERASE
? "USE ~S TO PAUSE DISPLAY"
QUIT TO "&MFUNCTION","DBASE MENU"

CASE COMMANDED"
ERASE
STORE DESCRIPTN TO MFUNCTION
QUIT TO "&MFUNCTION","DBASE MENU"

CASE C0MMAND="F"
DO &MFUNCTION
RESTORE FROM MENU

CASE C0MMAND="M"
STORE $ (MFUNCTION, 1 , 2) TO CMENU
SAVE TO MENU

(SCREEN IS ERASED)
EDITMENU.CMD COPYRIGHT 1982 BY STEVE PATCHEN

THIS ROUTINE ALLOWS EDITING OF MENU FILES
The MENU AND MENURPT are being ed i t ed .
WHICH MENU DO YOU WISH TO ADD TO, DELETE FROM OR OTHERWISE CHANGE. :A0

(SCREEN IS ERASED)

THE DATAWARE MANAGEMENT SYSTEM (TM)

1 The DATA DICTIONARY
2 The PROJECT CHART
3 The BUILD SYSTEM
4 Project ini t ia l izat ion
5 SYSTEM HOUSEKEEPING ROUTINES

IS THIS IT? :Y
DO YOU WISH TO MAKE ADDITIONS , DELETIONS OR CHANGES? (A, D,C) :C
WHICH SELECTION DO YOU WISH TO CHANGE?
USE A ' * ' TO EDIT THE TITLE LINE. :*

(THE MENU.FMT SCREEN IS DISPLAYED HERE)
(THE SCREEN IS ERASED BEFORE AND AFTER THE SCREEN ENTRY)

THE DATAWARE MANAGEMENT SYSTEM (TM)

1 The DATA DICTIONARY
2 The PROJECT CHART

3 The BUILD SYSTEM
4 Project ini t ial ization
5 SYSTEM HOUSEKEEPING ROUTINES
WHICH SELECTION DO YOU WISH TO CHANGE? :

WHICH MENU DO YOU WISH TO ADD TO, DELETE FROM OR OTHERWISE CHANGE?

(THE SCREEN IS ERASED)

TO CMENU03/02/82 DATAWARE SYSTEMS (IM)

BUILD OR EDIT THE MENUS

Build menus from the dictionary GENMENUS
MENU
DELFUNCT
ADDFUNCT
PRINTMEN
PRINTHLP
B3

Add a program call to selected menus
Print the menus
Print the help messages
RETURN TO THE BUILD MENU

* > To do a CP/M command
* . To do a DBASE I I command
* * To go to a MENU not l i s ted by entering i t s name
* ? To see help messages for any selection

* SELECTION DESCRIPTION MENU/FUNCTION NAME *

ENTER A SELECTION CHARACTER!
WAITING >
ENTER the CP/M command. :WS

*** END RUN dBASE I I ***

Figure 2 Files and Source Listings
STRUCTURE FOR FILE: MENU. DBF
NUMBER OF RECORDS: 00032
DATE OF LAST UPDATE: 03/03/82
PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC
001 MENU C 002
002 SELECT C 001
003 DESCRIPTN C 040
004 FUNCTION C 010
005 COMMAND C 001
006 LO c 077
007 LI c 077
008 L2 c 077
009 L3 c 077
010 L4 c 077
on L5 c 077
012 L6 c 077
013 L7
** TOTAL **

c 077
00671

STRUCTURE FOR FILE: MENURPT. DBF
NUMBER iOF RECORDS: 00003
DATE OF LAST UPDATE: 03/03/82
PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC
001 KEY C 010
002 FILE1 c 010
003 FILE2 c 010
004 KEY1 c 009
005 KEY2 c 009
006 KEY3 c 009
007 INDEXED L 001
008 FUNCTION C 010
009 FORMAT1 C 010

010010 FORMAT2 c
on LENGTH N 002
012 MARGIN N 002
013 TITLE c 060
014
** TOTA1

HEADER c 132
- ** 00285

Lifelines /The Software Magazine, May 198226

CASE COMMAND="E"
SELECT SECOND
LOCATE FOR "&MFUNCT1ON"$KEY
IF .NOT. EOF

STORE FORMAT1 TO PFORMAT
STORE FORMAT2 TO SFORMAT
STORE FILE1 TO PFILE
STORE FILE2 TO SFILE
STORE INDEXED TO IS INDEXED
STORE KEY1 TO KEYA
STORE KEY2 TO KEYB
STORE KEY3 TO KEYC
STORE TITLE TO ETITLE
STORE FUNCTION TO MFUNCTION
DO &MFUNCTION
RESTORE FROM MENU

ELSE
? "&MFUNCTION IS NOT LISTED IN THE SCREEN FORMAT FILE . "

WAIT
ENDIF

CASE COMMAND*"R"
SELECT SECOND
LOCATE FOR "&MFUNCTION" $KEY
IF .NOT. EOF

STORE FORMAT1 TO PFORMAT
STORE FORMAT2 TO SFORMAT
STORE FILE1 TO PFILE
STORE FILE2 TO SFILE
STORE INDEXED TO IS INDEXED
STORE KEY1 TO KEYA
STORE KEY2 TO KEYB
STORE KEY3 TO KEYC
STORE TITLE TO RTITLE
STORE HEADER TO RHEADING

STORE LENGTH TO FLENGTH
STORE MARGIN TO BOT
STORE FUNCTION TO MFUNCTION
DO &MFUNCTION
RESTORE FROM MENU

ELSE
? "&MFUNCTION IS NOT LISTED IN THE REPORT F ILE . "

WAIT
ENDIF

ENDCASE
ENDIF

ENDCASE
IF .NOT. >(ACTION)="M"

ERASE
SELECT SECOND
USE &REPORTFILE
SELECT PRIMARY
USE &MENUFILE INDEX &MENUFILE

ELSE
? DESCRIPTION, FUNCTION,COMMAND
ACCEPT ' IS THIS IT? ' TO ANSWER
IF ! (ANSWER)*' Y'

DELETE
PACK
IF COMMAND* ' R ' . OR. COMMAND*' E '

SELECT SECOND
LOCATE FOR KEY=P. FUNCTION
IF .NOT. EOF

DELETE
PACK

ENDIF
SELECT PRIMARY

ENDIF
ENDIF

ENDIF
ENDIF

IF K ANSWER)* 'A '
ACCEPT "WHAT SELECTION DO YOU WISH TO ADD? " TO KEY2VAL

ACCEPT "WHICH EXISTING SELECTION WILL THIS FOLLOW? " TO ANSWER

LOCATE FOR KEY1VAL$MENU. AND. ANSWERSSELECT

IF EOF
? " I DO NOT FIND THIS ONE."

WAITING
ELSE

INSERT BLANK
REPLACE MENU WITH KEY1VAL, SELECT WITH KEY2VAL

SET FORMAT TO MENU
READ
IF COMMAND*' R ' . OR. COMMAND='E'

SELECT SECOND
APPEND BLANK
REPLACE KEY WITH P. FUNCTION
SET FORMAT TO MENURPT
READ
SELECT PRIMARY

ENDIF
ENDIF

ELSE
? " CHOICE NOT IMPLEMENTED YET."

WAIT
ENDIF
ENDIF
ENDIF

ACCEPT " I CANNOT FIND IT. DO YOU WISH TO CREATE IT? " TO ANSWER

IF ! (ANSWER)= 'Y '
ACCEPT "HOW MANY SELECTIONS WILL BE IN THE MENU? " TO ANSWER

STORE VAL(ANSWER) TO COUNT
STORE 1 TO SELECTNUM
ACCEPT " ENTER THE MENU TITLE LINE. " TO ANSWER

APPEND BLANK
REPLACE MENU WITH KEY1VAL, DESCRIPTN WITH ANSWER

APPEND BLANK
REPLACE MENU WITH KEY1VAL
DO WHILE COUNT>0

APPEND BLANK
REPLACE MENU WITH KEY1VAL, SELECT WITH STR(SELECTNUM, 1)

SET FORMAT TO MENU
READ
IF COMMAND*'R ' .OR. COMMAND*' E '

SELECT SECOND
APPEND BLANK
REPLACE KEY WITH P. FUNCTION
SET FORMAT TO MENURPT
READ
SELECT PRIMARY

ENDIF
STORE COUNT-1 TO COUNT
STORE SELECTNUM+1 TO SELECTNUM

ENDDO
LIST OFF FOR KEY1VAL$MENU SELECT, DESCRIPTN, FUNCTION, COMMAND

ENDIF
ENDIF

ERASE

? "WHICH MENU DO YOU WISH TO ADD TO, DELETE FROM OR OTHERWISE CHANGE? "

ACCEPT TO KEY1VAL
ENDDO
RELEASE ANSWER, KEY1VAL.KEY2VAL, NULLINE

ENDIF
RETURN

ENDDO

* 03/08/82
ERASE
REMARK MENUEDIT.CMD COPYRIGHT 1982 BY STEVE PATCHEN

REMARK THIS ROUTINE ALLOWS EDITING OF MENU FILES

STORE "
" TO NULLINE

IF SFILE$NULLINE.OR.PFILE$NULLINE

? "THE &PFILE PARAMETERS PROVIDED BY THE MENU ARE NOT SUFFICIENT FOR THIS PROGRAM!"

WAIT
ELSE

SET FORMAT TO SCREEN
SELECT SECONDARY
USE &SFILE
SELECT PRIMARY
USE &PFILE INDEX &PFILE
? "The &PFILE AND &SFILE a re being ed i t ed . "

ACCEPT "WHICH MENU DO YOU WISH TO ADD TO, DELETE FROM OR OTHERWISE CHANGE. " TO KEY1VAL

DO WHILE .NOT. KEY1VAL$NULUNE

FIND &KEY1VAL
IF #X)

STORE # TO POSITION
ERASE

DO WHILE .NOT. EOF .AND.KEY1VAL$MENU
DISPLAY OFF SELECT, DESCRIPTN, FUNCTION,COMMAND

SKIP
ENDDO
7
ACCEPT " IS THIS LT? " TO ANSWER
IF ! (ANSWER)= 'Y '

ACCEPT "DO YOU WISH TO MAKE ADDITIONS, DELETIONS OR CHANGES?(A,D,C) " TO ANSWER

IF ! (ANSWER)* 'C '
? "WHICH SELECTION DO YOU WISH TO CHANGE?"

ACCEPT "USE A ' * ' TO EDIT THE TITLE LINE. " TO KEY2VAL

DO WHILE .NOT. KEY2VAL$NULLINE
IF KEY2VAL*"*"

GOTO POSITION
SET FORMAT TO MENU
READ

ELSE
LOCATE FOR KEY1VAL$MENU .AND. KEY2VAL$SELECT

IF .NOT. EOF
SET FORMAT TO MENU
READ
IF COMMAND="R" . OR. COMMAND="E"

SELECT SECONDARY
LOCATE FOR KEY=P. FUNCTION
IF EOF

APPEND BLANK
REPLACE KEY WITH P. FUNCTION

ENDIF
SET FORMAT TO MENURPT
READ

1982 BY STEVE PATCHEN
' *********** MENU EDITOR ************* '

'menu name ' +KEY1VAL
' menu select ion ' GET SELECT

' se l ec t i on desc r ip t ion ' GET DESCRIPTN

' se l ec t i on funct ion ' GET FUNCTION

' COMMAND CHARACTER ' GET COMMAND

'THE HELP MESSAGE FOR THIS SELECTION IS : '

I i l l . .SELECT PRIMARY
ENDIF

ENDIF
ENDIF
ERASE
LIST OFF FOR KEY1VAL$MENU SELECT, DESCRIPTN, FUNCTION, COMMAND

ACCEPT "WHICH SELECTION DO YOU WISH TO CHANGE? USE ' * ' TO DO THE TITLE LINE." TO KEY2VAL-

ENDDO
ELSE
IF ! (ANSWER)= 'D '

ACCEPT "WHICH SELECTION DO YOU WISH TO DELETE? USE ' * ' TO DELETE IT ALL." TO KEY2VAL

IF KEY2VAL*'* '
DELETE FOR KEY1VAL$MENU
PACK
? KEY1VAL+' HAS BEEN DELETED. '

ELSE
LOCATE FOR KEY1VAL$MENU.AND.KEY2VAL$SELECT

IF EOF
? ' I CANNOT FIND THIS ONE. '

WAIT

■» r

(continued next page)
27

Lifelines/The Software Magazine, Volume II, Number 12

* 03/03/82
* MENURPT. FMT
* COPYRIGHT 1982 BY STEVE PATCHEN
@2,0 SAY ************ REPORT AND SCREEN PARAMETERS ************* '
@ 3 ,0
@4,0 SAY 'menu name ' +KEY1VAL
@5,0 SAY ' menu select ion ' +KEY2VAL
@ 6 ,0
@7,0 SAY ' s e l ec t ion descr ip t ion ' +DESCRIPTN
@ 8 ,0 SAY ' s e l ec t i on function ' FUNCTION
@9,0 SAY ' COMMAND CHARACTER ' +COMMAND
@ 10 ,0
@ 11 ,0 SAY ' f i l es used ' GET FILE1
@ 11 ,50 GET FILE2
@ 12 ,0 SAY 'a re the f i l es indexed? ' GET INDEXED
@ 13 ,0 SAY ' keys used ' GET KEY1
@ 13 ,40 GET KEY2
@ 13 ,55 GET KEY3
@ 14 ,0 SAY ' sc reen o r report form f i l e s i f required'
@ 15 ,0 GET F0RMAT1
@ 15 ,40 GET FORMAT2
@ 16 ,0 SAY ' r epor t o r entry function name' GET FUNCTION
@ 17 ,0 SAY ' f o r r epor t s , enter the form length and margin allowance.
@18 ,0 GET LENGTH
@ 18 ,30 GET MARGIN
@ 19 ,0 SAY ' i f there i s a t i t le o r heading enter i t .
@ 20 ,0 GET TITLE
@ 21 ,0 GET HEADER

* 03 /08 /82
* TOPOFPAG.CMD does an e jec t and a new top margin heading
* uses : RTITLE, RHEADING, PAGE, LINES, FLENGTH
EJECT
STORE FLENGTH TO LINES
? DATE()+" page "+ST!
? " "+RTITLE
? RHEADING
STORE "------(th is l ine i s suppose to have 132 '-'s i n i t) ------" TO RLINE
? $(RLINE, 1 ,LEN(RHEADING))

STORE LINES-5 TO LINES
STORE PAGE+1 TO PAGE
RELEASE RLINE
RETURN

Figure 3 A Menu Report
THE SYSTEM MENUS

MENU NAME, SELECTION, DESCRIPTION, FUNCTION, COMMAND

MENU AO

THE DATAWARE MANAGEMENT SYSTEM (TM)

M

1 The DATA DICTIONARY Bl M
THE DATA DICTIONARY MENU HAS ROUTINES FOR ENTERING AND REPORTING DICTIONARY

ENTRIES.

2 The PROJECT CHART B2 M
THE PROJECT CHART MENU CONTAINS ROUTINES TO CREATE AND EDIT THE PROGRESS

CHART AND THE WORK ASSIGNMENTS. IT ALSO HAS ROUTINES TO PRINT PROGRESS
REPORTS AND SYSTEM FORMS.

* 03/03/82
* REPORT1.CMD pr ints a group t i t le and then calls PFORMAT
* uses : RTITLE, RHEADING, PAGE, LINES, FLENGTH, PF ILE ,SFILE , KEYA, KEYB, VALUE
* PFORMAT , SFORMAT , NULLINE , KEYAVAL , KEYBVAL , BOT
* ca l l s : TOPOFPAG

STORE "
IF .NOT. SFILE$NULLINE

SELECT SECOND
USE &SFILE

ENDIF
SELECT PRIMARY
USE &PFILE
STORE 1 TO PAGE
STORE TRIM (RHEADING) TO RHEADING

SET FORMAT TO PRINT
SET PRINT ON
DO WHILE .NOT. EOF

DO TOPOFPAG
DO WHILE .NOT. EOF .AND. (LINES-B0T-3)>0

STORE &KEYA TO KEYAVAL

? KEYA, KEYAVAL
STORE LINES -2 TO LINES
DO WHILE .NOT. EOF .AND. &KEYA=KEYAVAL

STORE &KEYB TO KEYBVAL
DO &PFORMAT
SKIP
IF (LINES-BOTXl

DO TOPOFPAG
ENDIF

ENDDO
ENDDO

ENDDO
RELEASE PF ILE , SF ILE , PFORMAT , SFORMAT , KEYA, KEYB, KEYC, RTITLE , RHEADING , FLENGTH
RELEASE PAGE , LINES , NULLINE , KEYAVAL, KEYBVAL, KEYCVAL , BOT
SET FORMAT TO SCREEN
EJECT
EJECT
SET PRINT OFF
RETURN

THE BUILD SYSTEM MENU HAS ROUTINES TO BUILD AND MAINTAIN DATA PROCESSING
APPLICATIONS. IT HAS ROUTINES TO BUILD THE SYSTEM MANUALLY OR AUTOMATICALLY
FROM A LOGICAL STRUCTURE IN THE DATA DICTIONARY.

4 Project i n i t i a l i z a t i on B4 M
THIS MENU CONTAINS ROUTINES WHICH ARE REQUIRED WHEN STARTING A NEW PROJECT

5 SYSTEM HOUSEKEEPING ROUTINES B5 M
THIS MENU CONTAINS ROUTINES TO BACKUP SYSTEM FILES AND TO DO OTHER GENERAL

MAINTENANCE ON THE SYSTEM.

MENU B3

THE BUILD SYSTEM M

1 Build o r Ed i t the Menus MO M

THE SYSTEM MENUS
MENU NAME, SELECTION, DESCRIPTION,

'p
FUNCTION, COMMAND

2 Build data f i l e s

3 Build Reports

4 Build en t ry screens

5 Build Program modules

6 RETURN TO THE MAINMENU

NO M

RO M

SO M

PO M

AO M

MENU MO
BUILD OR EDIT THE MENUS

* 03 /03 /82
* MENURPT1.CMD pr in ts menu entr ies
* uses : KEYB, KEYBVAL, LINES, BOT, LCNT, LINE, KEYA, KEYAVAL, NULLINE
* ca l l s : TOPOFPAG

1 Build menus from the dictionary GENMENUS F

2 Add o r edi t menus MENU E
report o r screen key: MENU

f i l e s : MENU MENURPT
fi le keys : MENU SELECT

f i l e s are indexed: .T .
function f i l e : MENUEDIT

format f i l e s : MENU MENURPT
form length and margin: 24 2
t i t l e : THE SYSTEM MENUS

heading:

3 Delete a program call from al l menus DELFUNCT F

4 Add a program call t o selected menus ADDFUNCT F

? " " .KEYBVAL,"
STORE LINES -2 TO LINES
IF COMMAND="R" . OR. COMMAND="E"

IF (LINES-BOT-9)<1
DO TOPOFPAG

ENDIF
STORE LINES-9 TO LINES
SELECT SECOND
LOCATE FOR KEY=P . FUNCTION
IF .NOT. EOF

? "
?

? "
? "
? "

ELSE
?
?
? "
?
?
?
?
?

ENDIF
SELECT PRIMARY

ENDIF
STORE 0 TO LCNT
STORE "L0" TO LINE
DO WHILE LCNT < 8 .AND. .NOT. &LINE$NULLINE

IF (LINES-BOTXl
DO TOPOFPAG

ENDIF
? " " .&LINE
STORE LCNT+1 TO LCNT
STORE "L"+STR(LCNT, 1) TO LINE
STORE LINES -1 TO LINES

" , DESCRIPTN , FUNCTION , COMMAND

report o r screen key: " ,KEY
f i l e s : " ,F ILE1 ,F ILE2

fi le keys : " ,KEY1,KEY2,KEY3
fi les are indexed: ".INDEXED

function f i l e : " .FUNCTION
format f i l e s : " , FORMAT1.FORMAT2

form length and margin: " .LENGTH, MARGIN
t i t l e : " .TITLE

heading: ".HEADER

THE SYSTEM MENUS
MENU NAME, SELECTION, DESCRIPTION, FUNCTION, COMMAND

Print the menus REPORT1
report o r screen key: REPORT1

f i l e s : MENU MENURPT
f i le keys : MENU SELECT

f i l e s are indexed: .T .
function f i l e : REPORT1

format f i l e s : MENURPT1
form length and margin: 51 8
t i t l e : THE SYSTEM MENUS

format record not found!"

■ ■■
■I

I
Lifelines/The Software Magazine, May 1982

M
il

.1
W

i
JI

ll JI

Jl iMENDDO
RELEASE LCNT, LINE
RETURN

28

heading: MENU NAME, SELECTION, DESCRIPTION, FUNCTION, COMMAND
THIS ROUTINE USES A REPORT FUNCTION TO PRINT A COPY OF THE SYSTEM MENUS.

ANNOUNCING
THE FOX & GELLER

dBASE II
PROGRAM

GENERATOR!
QUICKCODE™

Now, without any programming, you
can create these in seconds:

* DATA ENTRY PROGRAMS
* DATA RETRIEVAL PROGRAMS
* DATA EDIT /VALIDATION PROGRAMS
* MENUS
* dBASE FILES
INTRODUCING FOUR NEW DATA TYPES:

DATE • DOLLARS • TELEPHONE
• SOC. SEC. NO.

With QUICKCODE, you can have your program,
but you don’t have to write it. So, you can do
things like knocking out an entire accounting
system over the weekend! And QUICKCODE in-
cludes a powerful new version of our popular
QUICKSCREEN™ screen builder, so you will put
together screens and reports that’ll dazzle even
the most skeptical (you can even use Wordstar™
to set up your screen layouts).

you MUST SEE IT TO BELIEVE IT.
And is QUICKCODE EASY TO USE? You never
saw anything so easy. You don’t have to know
how to program. You don’t even have to answer a
lot of questions, because there aren’t any!

QUICKCODE $295
ALSO FROM FOX & GELLER

QUICKSCREEN
Microsoft BASIC version $149
CBASIC version 149
dBASE-lI version 149

dUTIL dBASE utility 75

Fox & Geller Associates
P.O. Box 1053

Teaneck, NJ 07666 (201) 837-0142
dBASE-lI TM Ashton-Tate

Wordstar TM Micropro Int’l

6 Print the help messages PRINTHLP F

7 RETURN TO THE BUILD MENU B3 M

8 Print the menus to a file REPORTF1 R
report or screen key: REPORTFI

files: MENU MENURPT
file keys: MENU SELECT

files are indexed: .T.
function file: REPORTFI
format files: MENURPT1

form length and margin: 51 12
title: THE SYSTEM MENUS

heading: MENU NAME, SELECTION, DESCRIPTION,
THIS ROUTINE PRINTS TO A FILE INSTEAD OF THE PRINTER

FUNCTION, COMMAND

MENU *

THIS IS THE DIRECT ROUTING MENU COMMAND
THE * SELECTION IS USED TO JUMP DIRECTLY TO A MENU BY ENTERING ITS NAME.
Respond to the prompt with the two character name of the menu. This name is

THE SYSTEM MENUS
MENU NAME, SELECTION, DESCRIPTION, FUNCTION, COMMAND

displayed to the right of the selection descriptions. Those selections with
longer names are functions. They can be called with the . selection.

MENU ?

THIS IS THE COMMAND TO DISPLAY HELP MSGS
THE ? SELECTION IS USED TO VIEW HELP MESSAGES FOR ANY SELECTION IN THE MENU.
Respond to the prompt with the character for the selection you wish to view.

MENU

THIS IS THE DBASE II DIRECT COMMAND
THE SELECTION CAN BE USED TO ENTER ANY DBASE II COMMAND LINE.
Respond to the prompt with the command line you wish executed. The syntax of
the line will be tested before executing it. This selection can be used to
execute functions directly by using the 'DO' command.

THIS IS THE CP/M DIRECT COMMAND ENTRY
THE '>' SELECTION ALLOWS EXECUTION OF CP/M COMMANDS. THE MENU IS RESTORED
AFTER THE CP/M COMMAND IS COMPLETED. Respond to the prompt with the command
line you wish executed.

Ver. 2
For Z-80 CP/M Ver. 2.x & Northstar DOS Users.

The complete professional software system, that meets
ALL provisions of the FORTH—79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!

OURS OTHERSFEATURES
79-Standard system gives source portability. YES
Professionally written tutorial & user manual. 200 PG.
Screen editor with user-definable controls. YES
Macro-assembler with local labels. YES
Virtual memory. YES
BDOS, BIOS & console control functions (CP/M). YES
FORTH screen files use standard resident

file format. YES
Double-number Standard & String extensions. YES
Upper/lower case keyboard input. YES
APPLE I l/l l+ version also available. YES
Affordable! $99.95
Low cost enhancement option:
Floating-point mathematics YES

Powerful package with own manual,
50 functions in all,
AM9511 compatible

FORTH-79 V.2 (requires CP/M Ver. 2.x). $ 99.95
ENHANCEMENT PACKAGE FOR V.2;

Floating point $ 49.95
COMBINATION PACKAGE $139.95
(CA res. add 6% tax: COD accepted)

MicroMotion
12077 Wilshire Blvd. # 506
L.A.,CA 90025 (213) 821-4340
Specify APPLE, CP/M or Northstar
Dealer inquiries invited.

(continued next page)
29Lifelines/The Software Magazine, Volume II, Number 12

Features
8080 Assembler Programming
Tutorial: Pitfalls of Programming

Ward Christensen

C-- 0110 CPI 10
— M 0112 CPI 23
— M 0114 CPI 7E
----- 0116 CPI CO
----- 0118 CPI E8
-Z- 01 1A CPI F9
C-M 01 IB RST 7
All the values shown are in hexadeci-
mal, so I won't show them as 23H, but
just 23.

Let's look at the individual instructions
and their results. At 100, I loaded 23
(hex) into A. In comparing it to 10 at
102, no indicators were set, as shown in
the line at address 104. Then, you see
the compare to 23 set (Z)ero, as would
be expected.

The compare to 7E resulted in (C)arry
and (M)inus being set. Since the CPI
instruction is like a subtract instruction
that sets the indicators but doesn't
change the accumulator, you would ex-
pect M to be set on: 23-7E produces a
negative result.

You might also expect the compare to
CO to set (M)inus, but there's a catch.
The (M)inus indicator is set as if the
values were signed. Hex CO, if treated
as signed, is -40. Now, if you consider
the CPI to set the status bits like a sub-
tract, subtracting CO becomes a sub-
tract of -40. To subtract a negative
number, you complement it and add.
Thus it becomes 23 + 40. This is 63, a
positive number, so the (M)inus flag is
not on.

How can you avoid this pitfail when
you don't know the values you will be
working with? Unless you are explicitly
working with signed numbers, just use
the (C)arry flag. As I mentioned in sec-
tion 8 of this tutorial, I have a little
memory aid for the state of (C)arry
after a compare: "C.A.L.", which
stands for "Carry if Accumulator is
Less". This works for all values, as you
see in the example. For instance, in
MVI A,E8 and its following compares,
only the compare with F9 sets carry,
since that was the only value for which
the accumulator (E8) was less.

Lifelines/The Software Magazine, May 1982

I NX H ; po in t to next
MOV A,M ;get char
ORA A ; was i t zero?
JZ FINAL ; yes , b ranch .

Any of several instructions may be
used to make the test. I prefer ORA A,
but ANA A would serve as well. Also,
a compare instruction could be used -
CPI 0 - but "hackers" like to keep in
mind that CPI 0 takes two bytes, and
ORA A only one.

CONCLUSION: Watch which instruc-
tions set the condition code bits. In
general, data movement instructions
do not.

Comparing Values

When starting to program in 8080
assembly language, you might be
tempted to use some instruction se-
quences which would not have the ex-
pected effect. I learned these the hard
way - by writing programs that just
didn't work.

Also, there are times when debugging a
program under DDT or SID, can cause
unforeseen problems.

I will attempt to address a few of these
areas to save you the time of stumbling
into them yourselves. You will also find
the many Tips and Techniques columns
in Lifelines useful. This tutorial ap-
propriately deals with the simpler ini-
tial pitfalls that the novice is likely to
encounter.

Setting The Condition Code
When comparing two values, the con-
dition code bits are set based upon the
results. The same is true for subtrac-
tion. Suppose you want to know
whether one value is less than another.
You might be tempted to use the sign
PSW bit, which is tested with JM, jump
if minus. However, when the values are
greater than 127, the sign bit just
doesn't properly reflect the outcome.

The 8080 condition code bits in the
PSW, such as zero, sign, parity, are set
only by certain instruction classes:
arithmetic (ADD, SUB, DAA, etc.),
logical (AND, ANA, ORA etc.), and
rotating (RAL, RRC, etc). The pitfall:
data movement instructions do not set
the condition bits. For example,

Here is a condensed listing of what SID
produces when the values 23H and E8H
are compared with 10H, 23H, 7EH,
0C0H, 0E8H, and 0FFH. The left three
columns show the state of the (C)arry,
(Z)ero, and (M)inus flags in the PSW.
Note that the flags are shown on the
line after the line showing the instruc-
tion. For example, I loaded a 23 into the
accumulator at address 100, and at 104
compared it to a 23. The next line
shows the Z flag on, i.e. Zero, indicat-
ing an equal compare.

; Th i s does not work:

I NX H ; po in t to next
MOV A,M ;ge t char
JZ FINAL ;was I t zero?

It doesn't work, because the MOV
A,M didn't set the condition code bits. I
have even seen this coded in a book
which purported to teach how to pro-
gram. The author apparently knew
6800 or 6502, and just made wrong
assumptions about the 8080.

How do you make such an instruction
sequence work? Just code an ORA A
instruction, which ORs the accumula-
tor with itself (thus not changing any-
thing) and sets the condition code bits:

— 0100 MVI A, 23
— ——0102 CPI 10
— 0104 CPI 23
-z- 0106 CPI 7E
C-M 0108 CPI CO
c— 010A CPI E8
c— 01 OC CPI F9
c— 01 0E MVI A,E8

The inner loop takes 50 machine cycles,
which on a 4MHz system means 12.5
microseconds per byte.
f

;Move sub rou t i ne .

; 0p t im i zed for speed

;Enter w i t h (HL)= f rom, (DE)= to ,

; and (BC)=coun t .

f

; F i r s t , i n c remen t B when C i s

CONCLUSION: Use (C)arry to in-
dicate comparisons in which the ac-
cumulator is less.

Counting in Registers

LX I B,200H

LOOP .

DCR C
JNZ LOOP
DCR B
JNZ LOOPThe most common way to repeat a se-

quence of instructions a given number
of times is to set a count in a register,
and count it down to zero. For exam-
ple:

MV I C,8 ;REPEAT 8 TIMES

LOOP MOV A,M ;GET CHAR

STAX D ; STORE IT

it works because the first DCR C loop
will be repeated 100H times, then DCR
B will go from 2 to 1, and the DCR C
will be executed another 100H times, a
total of 200H. Suppose however that
the loop is to be 102H times:

LX I B, 102H

LOOP .

DCR C
JNZ LOOP

DCR B

;no t zero,

; be done .

so DCR l oop ing may

MOVE MOV A,C ;CHECK LOW COUNT

ORA A ;ZERO?

JZ MV2

INR B ;FUDGE B

MV2 MOV A,M ;GET CHAR

STAX D ;SAVE IT

INX H ;BUMP POINTER

INX D ;BUMP POINTER

DCR C DECREMENT

JNZ MOVE ;DONE?

DCR B ;DECREMENT

JNZ MOVE ;DONE?

RET

DCR C ;MORE?

JNZ LOOP ;YES, LOOP

This technique works for values from 1
to 255, and, if a value of 0 is used, the
loop is repeated 256 times. This is be-
cause it will first be decremented to
255, so the entire process will be re-
peated 256 times.

When you want to count to values
greater than 256, you will need to use
two registers. One way is to decrement
a register pair:

DCX B

However, the condition code bits are
not set by this operation, so you must
explicitly test for zero by:

MOV A,B ;GET B

ORA C ;COMBINE WITH C

before doing the:

JNZ LOOP ;LOOP UNTIL BC=0

It would be tempting to use DCR
instructions, and they can be made to
work, but perhaps not in an obvious
manner:

; Th i s does not work

DCR C ;DCR LOW

JNZ LOOP ;NOT ZERO?

DCR B ;DCR HIGH

JNZ LOOP ;NOT ZERO?

The reason this doesn't not work, is
that when C is not 00, B is actually one
too small. Only when C is 00 does it
work. For example, if you wish to re-
peat something 200 hex times, you can:

JNZ LOOP

The first DCR C loop will be repeated
two times, then DCR B will go from 1
to 0, and the loop will not be executed
further. Thus the loop was executed on-
ly two times.
There are times when you are trying to
make a program work as rapidly as
possible. In that case, the technique of

DCX B

MOV A,B ;GET B

ORA C ;C0MBINE WITH C

JNZ LOOP ;L00P UNTIL BC=0

is a bit slower than the
DCR C

JNZ LOOP

DCR B
JNZ LOOP

Admittedly there is a bit of set-up time,
but the inner loop time is now reduced
to 40 clock cycles, or 10 microseconds.

NOTE: On a Z-80, the LDIR instruc-
tion accomplishes this exact task in the
processor hardware, in one instruc-
tion. I.E. instead of:

CALL MOVE

you could simply use::
LDIR

However, this will restrict your code to
running on a Z-80 only. It is faster - 21
cycles, or 5.25 microseconds. If you are
running the standard CP/M ASM or
MAC, LDIR is not a recognized opera-
tion code, so you will have to code its
value explicitly:

DB 0EDH,0B0H ;Z -80 LDIR

technique. So, what is needed, is a
"front end" for the DCR technique,
which will make sure it works properly
for all cases.

Let's take a character move subroutine
as an example, and add the front end to
make it fast. First, the traditional move
routine:
;Move sub rou t i ne .

;En te r w i t h (HL)= f rom, (DE)= to ,
CONCLUSION: Just be aware of the
pitfalls of 16-bit counting.

Complementing
and (BC)=count .

MOVE MOV A,M ;GET CHAR

STAX D ;SAVE IT

INX H ;BUMP POINTER

INX D ;BUMP POINTER

DCX B ;DEC. COUNT

MOV A,B ; IS COUNT

ORA C ; =0?

JNZ MOVE

RET

The CMA instruction complements
each individual bit of a register. To take
the negative of a register requires a
CMA followed by an INR. INR adds
one to the register; thus with CMA it
forms the proper negative of the
original value.

(continued next page)
Lifelines/The Software Magazine, Volume II, Number 12 31

DESK CHECK YOUR PROGRAMS. I
don't recommend doing this every
time, but very few programmers write
programs that run the first time, or that
have no latent bugs. If I have a se-
quence of instructions that I'm are not
certain of, I like to "play computer". To
do so, I take a piece of paper, and make
columns for each of the registers, and
the stack:
A B C D E H L STACK

By grouping B and C, D and E, and H
and L near each other, I can either write
in the single byte values that each con-
tains, or I can write a 16-bit value for
the register pair.
For example, if the first instruction in
my program was:

LXI H,0

You can similarly make the negative of
a 16-bit value, but this time you incre-
ment the entire value after CMAing it:

MOV A,B ;GET HIGH

CMA ;COMPLEMENT

MOV B,A ;PUT IT BACK

MOV A,C ;GET LOW

CMA ;COMPLEMENT

MOV C,A ;PUT IT BACK

I NX B ;ADD 1 TO BC

POP B

POP D

POP H

It doesn't work because after the three
PUSHes, HL is the topmost entry on
the stack, and the POP B POPs what
was in HL, into BC. The POPS must
be:

POP H

POP D

POP B

CONCLUSION: Remember CMA on-
ly flips the bits, and you must incre-
ment the value if you want the negative
of the original.

Setting the Stack Under
DDT Or SID

START YOUR COMMAND FILES
AT 100H. Command files (.COM)
under CP/M run at 100H, not at zero.
If you do not place an ORG statement
at the start of your file, DDT, or LOAD
will screw up. Place:

ORG 1 0OH

before any other instructions (except
EQU or comments) in your program.

LOAD THE STACK POINTER if you
are going to use it in your program.
(Very few programs don't use the
stack). For example, near the start of
your program:

LX I SP,STAK

then reserve the area:
DS 100 ; 1 00 by tes

STAK EQU $

When you write programs, they will
typically either return to CP/M or
warm boot when finished. To return to
CP/M, you must save the stack which
is passed to you by CP /M's console
command processor (CCP), and then
restore it before returning.
When testing a program under DDT or
SID, there is no stack set for you. Thus,
if your program is to return to CCP,
you must set the stack first. Here is a
suitable technique if you have some
high memory available:

F800 LX I SP ,F900

F803 CALL 1 00

F806 RST 7

With this technique, the stack is set at
F900, and the CALL 100 causes your
program to be executed, in a manner
similar to being called from CCP.
When it returns, it goes to F806, where
the RST 7 returns to DDT or SID.

Obvious Pitfalls

my paper would look like:

A B C D E H L STACK

If I then said:
0000

MVI D,7

I'd have:

A B C D E H L STACK
Ar 7After: 0000

PUSHH
I'd have:

A B C D E H L STACK
7 0000 0000

etc. Note that for the registers, I show
their actual content, but for the stack, I
show not the contents of the stack re-
gister, but what has been pushed onto
the stack. When I then POP something
off of the stack, I cross it off. Thus the
entries under STACK represent the
items currently in it, and the order they
are in is correct. When a routine ends,
typically the stack should again be
empty.

This technique has helped me uncover
many potential bugs: unbalanced stack
usage, registers getting clobbered, etc.

Other Pitfalls

NOTE the stack works its way down,
so the label follows the stack alloca-
tion.

DOCUMENT YOUR PROGRAMS.
It's nice to go back some time later, and
not have to guess what your program
did, or when it was written. A general-
ly good program introduction would
include:

Program name:
Author:
Date written:
Usage:
Execution:
Dependencies:

Hardware:
Software:

Modifications:

BALANCE STACK USAGE. For every
PUSH, there must be a POP, and for
every CALL, a RETum.

KEEP PUSHES AND POPS IN
ORDER. It is very tempting to do:

; t h i s does not wo rk

;SAVE REGS

PUSH B

PUSH D

PUSH H

Have you discovered any other novice-
oriented pitfalls? Send them in to me
care of Lifelines, and Ill collect and
print them in a future tutorial column.

32 Lifelines/The Software Magazine, May 1982

Features

A Detailed Description of
PLAN80, Part 1

Raymond J. Sonoff
Appendix A: PLAN80 Examples
Appendix B: PLAN80 Installation
Appendix C: Operating PLAN80
Appendix D: PLAN80 Error

Messages
Appendix E: Size Considerations

Control statements. PLAN80 models
are comprised of control statements of
any of the following:

BackgroundPLAN80 is a planning and analysis tool
from Business Planning Systems, Inc.
of Dover, Delaware, distributed by
Lifeboat Associates. Preliminary des-
criptions of PLAN80 have appeared in
Lifelines (on page 35 of the 'New Prod-
ucts' section in the September 1981 is-
sue and under the 'New Versions' col-
umn on page 44 of the December 1981
issue), but no detailed description has
been published here. The purpose of
this article is to provide an introduc-
tory user's viewpoint of PLAN80. Top-
ics to be addressed include the follow-
ing. What is needed to set up PLAN80
for a given system? What are some key
fea tures associated with having
PLAN80 as an operational software
tool? How useful are the examples pro-
vided in the manual? And, is PLAN80
really worth considering for my own
particular areas of application of com-
puter-based modeling?

A subsequent article will present
specific examples of modeling using
PLAN80 control statements and will il-
lustrate how this product can be used to
provide sensitivity analyses, and pro-
duce finished reports, hopefully while
improving an individual's understand-
ing, productivity, and overall effec-
tiveness.

What Is PLAN80?

PLAN80 is a modeling system that
helps you plan, forecast, project, esti-
mate, analyze, control, and under-
stand numbers representing sales, prof-
its, costs, taxes, cash, marketing plans,
cost center expense, R and D projects,
market share, growth rates, return on
investment, capital projects, real estate
deals, and discounted cash flow.

In short, PLAN80 is a computer-based
planning tool that the user can con-
figure for his particular needs and
desires, thereby eliminating drudgery
previously associated with calculating,
recalculating, checking and ultimately
producing useful reports.

PLAN80 is a PLANning tool that
works with either 8080- or Z80-based
computer systems. Aside from requir-
ing an Editor (of your own choice) to
create and modify text files, PLAN80 is
a standalone software package. Mini-
mum system requirements include the
following: an 8080- or Z80-based com-
puter system, a CP/M operating
system, 56K of RAM, a console with
clear screen and cursor addressing
functions, an Editor, a diskette with
CP/M on it, one disk drive having at
least 100K bytes of storage (or two
drives, if you wish to copy files), and
the operating manual from Business
Planning Systems, Inc.

Since every tabular report has certain
common elements, PLAN80 uses a lan-
guage that instructs your computer to
process labeled information. This will
involve TITLES, the framework of the
report in terms of ROWS and COL-
UMNS, the starting DATA values, and
the RULES used to compute totals and
other values. Supplementary informa-
tion that you can provide PLAN80 in-
cludes column width, line spacing, the
number of decimal positions, etc., so
that the report becomes visually effec-
tive.

Highlights of PLAN80

Manual. The 138-page manual is
supplied in a 3-ring binder and is
organized as shown below into eight
chapters and five appendices. An index
is also provided.

Chapter 1: Introduction
Chapter 2: PLAN80 Reference

Overview
Chapter 3: Defining the Framework
Chapter 4: Starting Values
Chapter 5: Calculations
Chapter 6: Output Statements
Chapter 7: Communicating between

Applications
Chapter 8: Other Statements

:TITLES Heading at top of
page

COLUMNS Columnar structure
:ROWS Row structure
:DATA Actual or assumed

values
:RULES Calculations
TOR Scope of other

statements
TUT Writes values to

disk
:GET Reads values from

disk
INITIALIZE Sets all values to

zero
INTERACTIVE Where to begin

recalculating
:PRINT Print reports

automatically
$:OPTIONS Control report

appearance
$:DISPLAY View results on

CRT screen
Graph results on
screen
Add or change
values interactively
Specify print
options
interactively
Print reports on
screen, printer, or
disk

:INCLUDE Include statements
from a separate file

:REPEAT Repeatedly include
a separate file

:MODELSIZE Determine maxi-
mum number of
rows and columns

Note: Only the COLUMNS and
ROWS statements are mandatory. All

(continued next page)
33Lifelines/The Software Magazine, Volume II, Number 12

other statements are optional.

Functions. Twenty-four mathemati-
cal functions are provided by PLAN80.
Each funct ion is recognized by
PLAN80 when preceded by an "@"
symbol.Among the functions available
are these:

PLAN80 will also tell you where the
error was encountered in your program
through use of a “V symbol immedi-
ately below or to the right of the source
of error. It is possible, however, that an
entry in prior lines may be the cause of
the problem even though it was syntac-
tically correct - but not what you
intended - and resulted in the noted
error. Whether you wish to correct the
error or to ignore it is left to you.
Correcting all syntax problems associ-
ated with input statements and begin-
ning again is certainly the best ap-
proach when actual printout of results
is desired.

Hard copy. Regardless of your
application, you will probably want
the results presented as a tabular
report. PLAN80 automates this task
for you. Thus, long range planning,
capital project evaluation, balance
sheet projections, project budgeting
and control, profit and loss, cash flow,
and numerous other computations can
be readily accomplished (including
recalculation for other sets of data, if so
desired), and each application of
PLAN80 can be summarized as a tabu-
larized printed report using the PRINT
statement.

Getting Started

Zenith WH19/Heath H19 terminal as
my console input) from the TERMI-
NAL.LST menu of seven terminal
types . After pe r fo rming a PIP
CONTROL.TRM = B:ZENITH.TRM
command, I was immediately able to
try out PLAN80 s examples described
in Appendix A of the manual. Every-
thing worked perfectly!

Special note: although I did not have to
use it, an excellent INSTALL.COM
program is provided with the original
diskette to assist you in configuring
non-standard terminals (defined here
as any terminal other than one included
in the TERMINAL.LST menu). Nearly
six pages of description are devoted to
explaining how to implement and
check out each step of the INSTALL
program, and a full recovery mode of
testing is built into each test. There are
five tests: cursor addressing, clear
screen and home, clear to end of line,
clear to end of screen, and highlighting.
When you can answer the question,
"Was test successful?" for the first test,
you automatically advance to the next
test, and so on. I tried out the INSTALL
program using the Read Current File
command (resulting in reading of the
CONTROL.TRM file that is identical
to the ZENITH. TRM file). I was
impressed by the interactive 'console
se l f - t e s t " p rog ram that c lear ly
functioned properly as proof of proper
configuration. Much thought went into
this INSTALL program, and it will
certainly prove a boon to non-standard
terminal owners who wish to get
PLAN80 up and running quickly.

Examples. In Appendix A of the
PLAN80 manual are the following:

2. Projected Sales and Gross Margin
3. Projected Financial Statements and

Cash Flow
4. Reinvestment of Earnings Model
5. Internal Rate of Return
6. Administrative Cost Center Budget
7. Budget Consolidation

Each of these examples is included on
the diskette, and you can learn a great
deal by simply running each of them,
trying out the graphics mode, chang-
ing the PRINT system parameters, and
even introducing syntax errors to
observe the associated error codes that
will result. Certainly, most of these
examples can be easily adapted for use
in establishing your own programs.

@SUM(jan. .jun) sum of groups
of rows or
columns

@AVG(row6. .rowl2)averages
@CUM(income) cumulative sum

within a row or
column

@MAX((0,profit) largest of a list
of values

@MIN(altl,alt2,alt3) smallest of a list
of values

@INT(col7) integer portion
of a number

@FRAC(col7) fractional
portion of a
number

@COS(angle3) trigonometric
functions of
angles expressed
in radians

@LOOKUP(income,bracketl. .
brackets, ratel)
@IRR(cashflow)

table lookup
internal rate of
return

@SL(amount,life) straight line
depreciation

@SOD(amount,life) sum-of-digits
depreciation

@DB(amt,life,1.25) declining
balance
depreciation

After an initial overview of the man-
ual, especially of Chapters 1 and 2, I
decided to configure my system follow-
ing the steps cited in Appendix B. For,
once this was accomplished, I could try
out Appendix C: Operating PLAN80,
and also be able to more readily
app rec i a t e the seven examples
provided in Appendix A.

Within an hour after receiving my
software package I had PLAN80 up
and running. The normal procedures of
blank diskette formatting, SYSGEN-
ning of CP /M, and copying of
PIP.COM were followed by PIPping
PLAN80.* files onto this diskette from
the diskette received with the PLAN80
manual. This Category I file is com-
pr ised of PLAN8O.COM and
PLAN80.OVR files. Next, Category II
files were PIPped using the PIP
A:=B:*.TXT command. These seven
files are examples of PLAN80 applica-
tions that will be described later.
Lastly, to configure the console
terminal portion of PLAN80, 1 selected
the ZENITH.TRM file (since I have a

@DBXSL(amt,life,2.) declining
balance/straight
line

The symbols within the parentheses are
simply representative 7 names" that
illustrate the flexibility of PLAN80
coding.

Error Codes. When PLAN80 en-
counters a statement whose syntax is
incorrect for some reason, you will
observe an error message on the CRT
screen. Most messages indicate that
PLAN80 was expecting an equal sign, a
closing parenthesis, a valid name, etc.,
but found something else. There are
more than thirty error codes provided
to assist you in determining the nature
of any syntax problems which occur in
programs you have created. These
error codes are explained both in the
manual and on the Reference Card.

Lifelines/The Software Magazine, May 198234

Sensitivity Analyses. Performing
"WHAT IF.. studies is the essence of
modeling via computers. One means to
accompl ish this ope ra t i on with
PLAN80 is as follows. On-line entry of
data values can be achieved by embed-
ding a question mark in the DATA
field for any particular variable. This
feature, when combined with a recalcu-
late command (" + " keystroke) and an
appropriately placed INTERACTIVE
statement, permits you to conduct a
sensitivity analysis in a rather direct
manner. The analysis can be ter-
minated, saved, and printed out when-
ever you decide that this is the appro-
priate action to take.

whatever areas of application you may
have either needs or interests.

Expert. After you become well ac-
quainted with PLAN80's conventions,
notations, and mode selection key-
codes, you will find yourself able to
readily produce highly specialized pro-
grams to meet your applications re-
quirements with but minimal referral
to the PLAN80 manual. In fact, the
Reference Card supplied with the man-
ual will become a shorthand reminder
of these conventions, etc. However,
should you feel at any time that further
clarification is required, the relevant
pages in the manual for the particular
PLAN80 operation or notation in ques-
tion are conveniently indicated on the
Reference Card.

Shortcoming. The principal short-
coming of PLAN80 (through version
2.2, at least) is the fact that graphics
display is presently restricted to the
screen of the CRT terminal. This is
somewhat understandable since dis-

play-related parameters appear on the
right hand side of the CRT screen, and
these entries would not normally con-
stitute a formalized hardcopy graphic
representation. I would conclude,
however, that this limitation will be
removed (if it is not already in process
or completed) by Business Planning
Systems, Inc. once they receive suffi-
cient feedback from otherwise satisfied
users of PLAN80.

Economic Perspective. I have found
that the more I studied financial plan-
ning, budgeting and control, econom-
ics, and engineering textbooks, the
more I became convinced that PLAN80
would prove to be a boon to any com-
pany or individual requiring computer
modeling at reasonable cost and under
standalone system situations. Cer-
tainly, a reasonably sophisticated
microcomputer system proves essential
to obtain maximum benefits from this
product, but it provides capabilities
usually found in much more expensive
packages.

Concluding Remarks

PLAN80 provides a powerful software
package for numerical problem solv-
ing. Augmenting the printout capabil-
ity is the graphic display (involving up
to fourteen items per display) that can
only be appreciated when examined
firsthand by "hands on" testing in

WHERE'S
JAMES ?

AT HIS
TERMINAL.

/
/

/
'A

K
IB

IT
S

I MAVEMT SEEN HIM FOR

I'LL Go SEE IF
HE'S OKAY

©/jQ Nl©o WHAT
5H0ULt> I Po?_

LOOK IT UP
IN THE

OPERATING
INSTRUCTIONS!
—n R _______

WHAT T>O I LOOK HOW SHOULD
IT up UNbER? J T KNow? bur

Lifelines/The Software Magazine, Volume II, Number 12 35

Features
Full Screen Program Editors:
PMATE _________________________

Ward Christensen

PMATE (from Lifeboat Associates) is
an immensely powerful, general pur-
pose, full screen editor. Of the editors I
have reviewed, it is the most customiz-
able.

The PMATE command language is
simply superb. I have never seen a
microcomputer editor allowing such
power, saving so much time on compli-
cated editing functions. In addition to
typical full screen capabilties, it pro-
vides a true editing oriented program-
ming language. As such, I'm sure there
are new things I will think of doing with
it years from now. I am now working
on a set of macros to do text printing,
but more importantly, to gather an in-
dex of keywords from the document it-
self.

Mike Olfe is helping spread the word
on PMATE with his column in Life-
lines. One particularly useful macro
Mike wrote will position you to a label
in an ASM file; you simply place the
cursor on a reference to the label in an
instruction operand, and then invoke
the macro. The macro then positions
you to the label itself.

Subjective Evaluation

everything. An index would be helpful
to find those commands not included in
the summary. I find myself paging back
and forth through the manual quite a
bit, and have used a highlighting
marker to help me find the more in-
teresting sections.

SPEED: PMATE is adequately fast. If I
didn't have WordMaster to compare it
with, I probably wouldn't have noticed
anything. However, in macros to
search and insert characters, it is enor-
mously slower than WordMaster. If I
have a lot of text upon which to per-
form repetitive operations, such as
stripping comments out of an ASM
program, I use WordMaster. Also,
PMATE lacks the all-important "repeat
key" capability; however, its superb
ability to be customized has allowed
me to add a hack-repeat ability. More
about that later.

ERGONOMICS: The default key-
board layout is "geometric". For exam-
ple, the control characters G, H, Y, and
B, are cursor left, right, up, and down.
This is a half left-handed, half right-
handed operation, and whether or not
you'll like it is a matter of personal pref-
erence. However, the fact that you can
customize makes the layout "anything
you want".

I like to be able to scroll a document
one line at a time, without moving the
cursor. PMATE will scroll a line at a
time, but only when the cursor has
moved out of a range called wander -
the number of lines away from the mid-
dle line of the screen. For example, if
wander is 4, when you attempt to move
the cursor more than 4 lines up from the
middle of the screen, the screen scrolls
down, and the cursor thus stays within
wander.

I have set wander to 0, so the cursor
stays in the middle of the screen. Thus
cursor movement up or down causes
the file to scroll one line, and the cursor
stays at the middle line of the screen.
Only when I was playing with PMATE
on a 450 baud remote terminal did I set

wander to a larger amount. This al-
lowed me to edit quite a bit of a page
without the remote system continually
sending new top or bottom lines as I
moved out of the wander limit.

CONFIGURABILITY: There is a con-
figuration program to set up PMATE
for a specific terminal. It is supported
by configuration files for several com-
mon terminals, including memory
mapped. If you do not have one of the
standard terminals, you can edit the
closest configuration file to customize it
to your terminal. The only drawback is
that you must key in the decimal or hex
values for control keys as you assign
them. How much more pleasant the
configuration process would have been
if "TN" could have been put in to mean
control-N, instead of having to do "20"
or "14H".

In addition, if you don't mind using
8080 assembler, you can really make
PMATE your personal "cup of tea".
This also eliminates the step of key-
board assignment using the decimal or
hex values for the keys.

NOTE: You are not programming in
8080 instructions, but only with define
byte (DB) character strings, and define
word (DW) addresses.

More than any other editor I have seen,
PMATE allows you to add commands
of your own, at several levels:

(1) PMATE has a text buffer called
"T", and 10 auxiliary buffers
numbered 0-9. You can place a
command in any of the auxiliary
buffers, and execute it by typing
".n" where "n" is the buffer number.
The commands in one buffer may
call those in ano the r , like
subroutines.

(2) You can create your own library of
commonly used commands, and
have them automatically patched
into PMATE so that they are resi-
dent in a special "global macro
area" every time you run PMATE.

DOCUMENTATION: PMATE comes
with an 80 page manual. The chapters
are:

(1) introduction for beginners;
(2) basic concepts;
(3) advanced concepts and commands;
(4) complete command set;
(5) macro examples;
(6) configuration information;
(7) how to more extensively customize

PMATE in assembler;
(8) a command reference appendix.

The documentation is quite complete.
However, certain subtleties are only
evident when you start using PMATE
for yourself.

The manual has a nice five page com-
mand summary, but it doesn't include

Lifelines/The Software Magazine, May 198236

You even have control over the bidirec-
tional disk scrolling, with several com-
mands. They refer to a "page" of data,
which means a user-set number of
lines, or a block of lines delimited by
control-L (ASCII form feed). The com-
mands are: XA - append next page of
input; -XA - bring back a page already
written to the output; XW - write a
page to the temporary output file; XR -
write one page out, and read a new one
in. Any of the commands may have a
number prefixing the "X", to indicate
the number of pages.

These commands, along with the com-
mand "@M" which shows you how
much free memory you currently have,
allow you to scroll a large file through
the text buffer, while keeping memory
available for bringing in other files in
other buffers.

INSERT: PMATE has a separate insert
mode.

OVERTYPE: PMATE has an overtype
mode.

UNDO-KEY: PMATE gets the prize
here. Whatever you delete gets pushed
onto a garbage stack, delimited from
the previous deletions. On request, a
control key "pops" the top of the stack.
You can thus delete a character, then a
line. Using the "pop" key would then
bring back the line. Another "pop"
brings back the single character. This is
simply superb, and like the repeat key
in MINCE, should set a standard for all
text editors to follow.

REPEAT: Nope! "An editor without a
repeat key is like a bicycle with flat
tires." It can go from here to there, but
it's not very fast and it's not much fun. I
absolutely couldn't stand it.

I used the PMATE customizability to
"hack up" a bearable substitute lacking
repeat key. I specifically coded several
two-keystroke commands, each of
which start with control-W. The char-
acter after the control-W is one of the
following: scroll up one page, scroll
down one page, character left, right,
up, or down, insert line, or character
delete. Thus, even though no repeat
key exists, I do have a way of doing
"four of something" for at least a few of
the more common cursor movements.

TEXT EDITING ABILITIES: PMATE
has a fill mode, with word-wrap, so it is

(continued next page)

grammability means you will learn by
sharing PMATE programming ideas
with other PMATE users.

Objective Evaluation
Video-Related Criteria

With PMATE's flexibility you can
even have several custom sets of
"global macros", perhaps one for
assembler programming, one for
general text processing, etc. A com-
mand called QMC copies the cur-
rent edit buffer to the global macro
area. From there, the macros are
easily executable within other com-
mands. Global macros are named
by a single character, and executed
by ".x" where "x" is the macro
name. There is even a special global
command which is executed auto-
matically when PMATE is run.

After placing your custom perma-
nent macros in PMATE with the
QMC command, the command
XDfilename will "clone" the current
copy of PMATE in memory (with
its new global macros) to disk for
future execution. To edit the global
macros, a QMG command gets
them into the current edit buffer.

(3) You can, with assembler program-
ming, write entirely new "instant
commands" - commands which are
executed based upon keystrokes.
They may be simple keystrokes: a
control-B for example; or you may
write a two-character sequence, so
as to effectively double the number
of different commands. They may
be as obscure and specialized as you
like. For example, I customized
PMATE so that control-] followed
by a dash puts a line of 60 dashes in
the file. Another example: PMATE
has a "kill line" control key, but it
worked in such a way that if
pressed while at the beginning of
the line, it killed both the line and
the carriage return at the end. If in
the middle of the line, it was merely
an "erase to end of line". I preferred
to have two distinct keys - one to
erase the entire line the cursor is on,
no matter which column the cursor
is in, and a second to erase to end of
line, even if it is in column one. It
was easy to add these functions.

EASY TO LEARN: The basic editing
functions of PMATE are quite easy to
learn. Like MINCE, however, it will
take you many hours to try all the in-
dividual commands. The more time
you spend with the book, the more
you'll learn, and thus the more time
you'll save. Also, the significant pro-

FULL SCREEN: CP/M's ED has only a
command mode. WordMaster has two
distinct modes: a full screen mode, and
a command mode in which the full
screen "goes away".

With PMATE, you are always in full
screen mode. The top line is a status
line, showing the filename, buffer
number, command numeric argument,
and file line and column. Line two con-
tains either the words OVERTYPE
MODE or INSERT MODE, or your
command.

There are keys to move the cursor one
line up or down, one character left or
right, or one word left or right. With
customizing in assembler, you could
add anything you want - something as
obscure as a command to move half
way from the column you are in to the
left margin.

The default configuration does not
have control keys to go to the begin-
ning or end of a line, but they may be
added in assembler. I customized a con-
trol key like WordMaster has: it moves
to the front of the line if not there, or if
there, moves to the end of the line.

SCROLLING: There are keys to scroll
up or down a user-set number of lines.
This may be a full screen, or perhaps
two-thirds of a screen, whatever you
like. A separate key goes to the top of
the buffer [or if already there] to the
bottom.

Terminal hardware line-insert and line-
delete are supported, so small (say, 1-4
line) scrolls are very efficient on ter-
minals that support this excellent fea-
ture. Without this support, Word-
Master has to completely redraw the
screen when scrolling backwards one
line.

File scrolling is transparent to the user.
The necessary scratch files are created
on disk to allow full bi-directional
scrolling of files bigger than memory.
This applies only to the "T" (text)
buffer.

Lifelines /The Software Magazine, Volume II, Number 12

suitable for basic text editing. An "nnF"
command sets formatted mode, with a
right margin of nn. Like WordStar, it
uses a special 'soft carriage return", i.e.
hex 8D, to indicate the "soft" end of a
line. Thus a paragraph consists of
"soft" terminated lines, and a final
"hard" (hex OD) carriage return.

PMATE also wraps at hyphens, but
when you go out of formatted mode,
any line that was wrapped at a hyphen
becomes simply a very long line.

PMATE also has the ability to print,
either a specific number of lines, or the
entire buffer. It does not explicitly han-
dle paging, or anything else. However,
the crude print capability, combined
with the powerful macro commands,
could concievably be turned into a ser-
viceable text processor. (As I said in the
opening paragraphs, I'm working on it.
The macros will be published in Life-
lines if I ever complete them.)

Command-Related Criteria

"T" followed by a letter. To insert a real
up arrow, you just press it twice. You
may also insert control characters by
using nnl to insert the value "nn" as a
character in the file.

Character strings representing numeric
values in any base may be inserted into
the buffer, by the command nn\. "nn"
may be a specific value, or a variable.
Suppose that variable 6 contains the
value 156, and that PMATE is in its de-
fault mode, decimal in and out. The
command @6 \ says to insert the value
of variable 6 into the buffer. The buffer
will then have, at the cursor position,
"156". If you issued the command
16QO, which says make 16 the base for
output, then @6\ would insert "9C" in-
to the buffer. The command string
"alvl[@l\9ivall]" would go to the top
of the buffer, set variable one to 1, then
number the line, followed by a tab,
stopping when the bottom of the file is
reached.

TYPE: Since PMATE always shows
you a full screen of data, there is no
type command, as was necessary in ED
or WordMaster. Instead there is a com-
mand QR, which if placed in a com-
mand string, displays the full screen
before continuing command execution.
You may thus, by placing a QR com-
mand at appropriate places in your
commands, watch the progress. On a
memory mapped display, this works so
fast, that you can literally write movies
in PMATE; it automatically goes down
a page, displays and moves, producing
perhaps 8 frames per second on a
5MHZ system with an 80x24 screen! I
use QR all the time on the memory
mapped screen, but am more frugal
with it on a 9600 baud terminal, since a
screen update takes more like one or
two seconds.

A QD command may be used to delay
('let you look") for a variable time
before proceeding - i.e. QR5QD in a
command will let you look at the screen
a bit longer than just using QR.

FIND: PMATE can find strings, either
staying within the current buffer con-
tents, or scanning ahead with auto-
matic disk buffering. It may also find
backwards, and again be either limited
to the buffer, or told to search the file
already written out to disk.

CHANGE: Like find, CHANGE may
be limited to the buffer, or allowed to

go through the entire file, either for-
wards or backwards.

MOVE and COPY: These are imple-
mented quite well: by marking one end
of the block to be moved or copied,
then going to the other end and typing a
control key which moves it to buffer
zero. If you want to copy, just press the
control key to yank buffer zero back in,
then reposition to where you eventu-
ally want the text, and yank it back
again. To move, just omit the first
yank. The only problem is that the
marked block is invisible, with no good
way to check where the mark is.

Other explicit commands support
moving or copying text to one of the
nine other buffers, as either a replace or
an append: nBmC copies n lines to buf-
fer m, overlaying whatever was there.
nBmD appends n lines to buffer m.
nBmM similarly moves, and nBmN
similarly moves with append. You may
also use tagging, but must issue the
command #BmC for example, to in-
dicate the tagged block is to be copied
to buffer m.

COMMAND STRINGS: Nice. Superb.
Unbelievable. Terrific. (Place your
favorite superlative here).

PMATE command strings are so
powerful, your time and imagination
will likely be the only limits to what
you do with them. PMATE even sup-
ports a trace mode to step through the
execution of a complex command.

Let me start by comparing PMATE
with the command language of ED.
PMATE did not specifically attempt to
mimic it, like WordMaster did. If
you're familiar with ED, you may take
a while to get used to C versus M to
move a character, S versus C to substi-
tute/change, B versus A to go to the top
of the file, etc. ED's simple "M" macro
repeat is not implemented. Instead, the
commands to be repeated are placed in
brackets: [and].

Still sounds like ED, right? Well, take
the usual ED macro abilities, and add
such goodies as conditional expressions
(if/then), continue (repeat loop if con-
dition met), break (break out of loop if
condition met). What do I mean, "con-
ditions"? Read on.

In PMATE, the macros may test for
any of several conditions. Conditions

MOVE: You may move to the top or
bottom of the file (via "A" and "Z"),
ahead or back by character (via "M" or
"-M"), line (via "L" or "-L") or
paragraph (via "P" or "-P"). In addi-
tion, "OL" moves to the front of the cur-
rent line. A positive or negative num-
ber may precede these commands, or a

to indicate moving to a tagged loca-
tion (tagging is done by a special con-
trol character).

DELETE: PMATE may delete charac-
ters (via "D") or kill lines (via "K"). A
positive or negative number may pre-
cede the command, which indicates the
direction and number of characters or
lines to delete. applies: "#K" will
kill from the cursor, to the place mark-
ed with the tag control key.

INSERT: Arbitrary character strings
may be inserted. The "I" command in-
serts the character string following it,
up to a terminating ESC (which echoes
as a "$"). To insert a single character,
Ichar$ may be used, or, a number or
character preceding the I: "xl would in-
sert the character "x". (The leading" is
part of the command - it is like a func-
tion that returns the value of the char-
acter following it).

Also, an arbitrary control character
may be inserted into a file, by typing

Lifelines/The Software Magazine, May 198238

front of the line, then return.

I chose to keep the indent amount in
variable one. Symbolically, it is re-
ferred to as @1. The macro in buffer
two looked like:

@l[il $]

This consists of a repeat loop (delimited
by an opening "[" and a closing "]"), ex-
ecuted the number of times contained
in variable one. If variable one is zero
nothing is done, i.e. the loop is ex-
ecuted zero times. Inside of the loop is
the simple string "i" for insert, and the
string itself, terminated by an ESC,
which echoes as "$".

I then needed another command,
which checked the first character in
each line, to see if it was the start or end
of a question. To see what I mean, here
is a sample of what the original HELP
file looked something like:

[Want to know how to scan?
To scan the summary, . . .blah
blah...

You can also scan specific
fields in the summary.

[Want to know how?
You select the field: Date,
From, To, Subject, by its
first character. . .

[Want to use "and" and "or"?
If you want to...

I wanted this to look like:

[Want to know how to scan?
I To scan the summary, . . .blah
I blah...
I
I You can also scan specific
I fields in the summary.
I [Want to know how?
I I You select the field:
I I Date, From, To,
I I Subject, by its
I I first character.
I]
I [Want to use "and" and "or"?
I I If you want to...

I

The command necessary to do this
follows (in pseudo code):

LOOP: (repeat this over and over)

Move down to the front of the
next line.

If the character under the cursor is
"[", then execute the command in buf-
fer two to put the current indent, then
add one to the indent amount, and
"continue" the loop back at the top.

If the character under the cursor is a
"]", i.e. the end of a question, subtract
one from the indent amount.

Execute the command in buffer two,
to set the indent for this line, whether it
is an end ("]"), or just a text line.

As a PMATE command, that looks
like:

[l@t = "[{ .2val?}
@t = "][-lval]
.2qr]

Let me split that out, to show you what
each piece means.

'[' means begin a loop.

1' means down one line (also implicitly
moves to the front of the line).

'@t = "[' is a PMATE conditional test.
@t means the value of the character
under the cursor, and "double quote
char" means the value of that character.
Thus this reads 'if the character under
the cursor is "['", even though the se-
cond double quote is not shown.

'{ ': Following a conditional expression,
the command contained in paired { and
} or [and], is executed if the condition
is met. Thus, the expression '.2valT' is
executed if the character under the cur-
sor is "[".

'.2' means to execute the command in
buffer two. This puts the appropriate
number of "Ibbb" indents on the cur-
rent line.

'val' adds one to variable one. Had I
wanted to add two, I would have had
to explicitly give the two: 2val.

T means to "continue", i.e. go back to
the top of the loop. PMATE makes
some simplifications over what a high
level language would do: the "top of
the loop" is defined as simply the
preceding "[" loop enclosing character.
More specifically, loops enclosed in "{ "
and are ignored. Thus looks

(continued next page)

may be a single test, such as "@e"
which tests the error flag; or they may
be complex expressions involving “ = ",
not " = ", greater than, less than, AND-
ing, ORing, complementing, etc.
(Whew!). What can you test? Any of
about twenty-five things - what col-
umn the cursor is in, what the character
under the cursor is, what line you are
on, the amount of memory remaining
in the buffer, even the value of the
ASCII character struck to reply to a
macro-imbedded prompt!

PMATE can also do arithmetic, and
has 10 variables to use, as well as a
stack to push and pop numeric values.
Additionally, it can look at or change
any byte of memory by placing its ad-
dress in variable 9. @@ then refers to
the byte pointed to by variable 9, and
nQ! will store n into that byte. PMATE
supports virtually any number base -
so powerful that you may have it take
octal on any number input, and display
hex on any number output.

Macros can call other macros, either
ones in another numbered buffer, or
one of the permanent macros.

The macros are powerful, but what I
have said doesn't adequately convey
how they might be used. Let's take a
specific example. In working on a
Users' Guide for CBBS (The Computer-
ized Bulletin Board System which Ran-
dy Suess and I developed), I wanted to
publish the text of some of the HELP
files. They are structured, such that in
one line they ask if you want help on
such-and-such. If you say no, then the
text following the question, and any
imbedded questions, are skipped. I
wanted to show this very clearly by in-
denting, and by placing a column of "I "
symbols, to line up the appropriate
questions and their ends. This is very
much like properly indenting a struc-
tured program, as you would in Pascal
or C.

I first created a command which inserts
"Ibbb" (where "b" means a blank),
based upon an indent count. I decided
to place this command in buffer two.
To do so, I typed: "b2e" which means
Buffer two Edit. I then typed control-
O, to go into overtype mode. I then
typed the macro, which is, in "pseudo
code":

Loop, repeating whatever the repeat
count is, inserting one "Ibbb" at the

Lifelines/The Software Magazine, Volume II, Number 12 39

back until it finds . (It skipped the "[
because it was smart enough to recog-
nize that as a character test, not a loop
start.)

'}' closes the loop started by

'@t = tests if the character under the
cursor is

'[' starts the "then" part of the condi-
tion.

-lval' subtracts one from variable one,
i.e. decrements the indent amount.

7 closes the "then" condition.

'.2' then executes buffer two, which
places the appropriate number of
"Ibbb" in front of the line.

'qr' is optional, and shows the progress
of the macro by updating the full screen
as it now looks.

7 closes the initial whole-macro loop
started by "[".

That's it! One example can hardly ex-
press the power of the language (for it is
a language), but I hope you get the idea
of how arbitrary a task it may be pro-
grammed to do.

MULTIPLE EDITS: PMATE, strictly
speaking, edits only one file at a time,
in its "T" (Text) buffer. However, you
may switch to another buffer, and in-
put another file. Management of the
buffer space (i.e. bidirectional file
scrolling) is only done in the text buffer,
so the total size of files being used in
other buffers is limited. However,
PMATE allows paging pieces of a file
in, where you specify the number of
lines per page, or allow them to be de-
limited by control-L form feeds.

You can finish editing one file, then
start editing another without leaving
PMATE. This is nice, and saves time
when editing several files.

File-Related Criteria

If you wish to eliminate the .BAK abil-
ity, and the file fits in memory, you can
input the entire file (to any buffer),
with an "Xlfilename" command. After
editing, you may XOfilename to save
it. If you are saving it back under the
same name, you must first explicitly
delete the original by an XXfilename
command.

SAVE: The XJ command is like the "H"
command in ED or WordMaster: it fin-
ishes writing out the edited file to the
work file, then renames the original file
to .BAK, and renames the temporary
file to the original filename, then starts
editing that file again. It is exactly iden-
tical to leaving PMATE, then re-editing
the same file.

QUIT: You can kill a buffer and discard
the edit. You can then edit another file,
the same file, or go back to CP/M.

READ: To insert a file from disk into
the one you are editing, you simply
"Xlfilename". It must fit in the avail-
able memory. Optionally, you may set
the page length (nQP) then "page" in
the file one or more pages at a time:
20QP would set the page length to 20
lines. iXIfilename would input the first
page (20 lines) of the file. 1X1 reads in
the next page. 2X1 would read in two
pages. If you think you have room, XI
would read in the rest of the file.

WRITE: You can write out the buffer to
another file. To write out a marked
piece of the file, first move the marked
text to another buffer, then write it,
then move it back.

DIRECTORY: PMATE nicely allows
you to insert the directory of any disk
into the file. One day during a big edit,
PMATE told me my disk was full. I
simply switched to buffer 1 (B1E),
asked for a directory list of the entire
disk (XLB:* .*) then began erasing (XX-
filename) any files I no longer needed.
Very nice!

OTHER: PMATE has a few features
that don't fit the above categories. For
example, horizontal scrolling of up to
250 characters can be executed. (Much
longer lines can be handled, but you'll
get to see only the first 250 chraracters).
While intriguing at first, I found it to be
unnecessary. If you have an application
which is creating a document that must
be printed more than 80 columns wide,
it would be vital; but this feature is

simply not needed for normal usage.
(Hmmm, I can think of an exception.
BDS-C programs, to maintain the nice
structured indenting, often go wider
than 80 columns.

Statistics

PMATE sells for $195, and is a Lifeboat
product, the author being Phoenix
Software Associates, Ltd. It takes
about 20K of memory, depending upon
how much you have added, and how
big your global macro area is.

Room For Improvement

There is very little I would change. I
have a few minor suggestions.

(1) A repeat key should be added.

(2) Some subtleties could be explained
in the documentation, so you don't
have to find them yourself. For ex-
ample, conditions allow an if/
then/ else. It is implemented as: if
condition [then expression][else
expression]. It is not documented
that the "][" pair of characters must
be coded just like that; i.e. you can't
put a space between the "]" and "[".
Also, if you mean to not have an
else condition, but want to start a
loop (which starts with "[") then
you must put a space or other char-
acter between the "]" that closed the
"then" expression, and the "[" that
begins the next loop.

(3) The handling of "-" in word-wrap is
not useful, and confuses other text
processing programs.

(4) The "W" command, to move a
word, erroneously stops at ASCII
tabs. It should stop only when a
genuine "word" is encountered.

(5) For every character you type, the
cursor jumps to the top right corner
of the screen to update the column,
then to the bottom right comer, to
no imaginable purpose. Kind of
"jumpy". I have switched from a
reverse video block cursor (which I
prefer) to a simple underline cursor,
so the cursor "jumpiness" is not so
distracting.

(6) In word-wrap mode, when the end
of a sentence falls at the end of a

BACKUP: PMATE does the same as
ED or WordMaster - after editing a file,
the original is renamed to ".BAK"; a
temporary file created by the editor is
renamed to the original name of the
file.

40 Lifelines/The Software Magazine, May 1982

Conclusions
customizing it, adding your own com-
mands, then writing macros for almost
any task you can dream up. I see from
recent Lifeboat ads that PMATE is now
available for IBM P.C. DOS, SB-86,
and MS-DOS.

line, PMATE tosses the second
space (which is technically correct
to have) following the period. This
will show up if the paragraph is
reformed by editing or changing the
right margin.

If you enjoy programming, you'll
probably enjoy PMATE. The ability to
write programs in your editor is really
quite nice. I unequivocally recommend
PMATE to any "hacker". You will love

Pseudo-Relocatable Subroutines
Gregory A. Knott

program will run as a stand-alone COM file. But it isn't really
a subroutine yet because this routine sits in the place where
BASIC is loaded. To have BASIC call this routine it must
reside in a memory location above BASIC but below the
CP/M system FDOS.

How can this be a problem, when all we have to do is move
this code up to a place where BASIC can use it? But there's
more to the problem than that. Let's say that we want this
code to reside at location B100 Hex. If we just placed the code
there everything would work until we got to the LXI instruc-
tion. At this point the register pair [D,E] would contain the
address of a message at 109H instead of B109H where the
message really is now. If you followed that last sentence you
understand that the ASM assembler assigns code addresses
based on where they reside relative to the TPA.

The Solution That Wasn't

So you want to write an assembler subroutine, but you don't
know how to place it in memory so MBASIC can get at it.
Maybe you've been going through some of the frustration I
did when I tried to do it, or maybe you have just given up,
thinking the problem is beyond your level of expertise! But
read on and well try to raise that level a little bit.

If you are one of the lucky ones (spelled "rich") who has a
relocatable macro assembler, you have probably solved this
problem already. But if you are like me (spelled "poor", and
only able to buy new software by making grand promises to
the spouse) you most likely have the assembler that was sup-
plied with your original CP/M system. Well, it is possible to
fake out Digital Research's ASM and end up with a program
that is almost relocatable; all it takes is a little more care.

The Problem

One day, while minding my own business, I had a great idea
for a subroutine. To implement it in MBASIC was practically
impossible, so I decided to flex my assembly language abili-
ties and code a routine that could be called from a BASIC pro-
gram. For the purposes of this article, I have substituted a
nonsense subroutine for the real one (obviously a no-non-
sense one). This subroutine does nothing more than print a
message to the CRT screen, but its simplicity will help to illus-
trate my point. Listing 1 shows the subroutine as it was
originally written.

Let's quickly step through this routine. The ORG statement
tells it to start at the beginning of the Transient Program Area
(TPA). The MVI instruction places the CP/M Print Function
code into Register C.

The LXI puts the address of the message we want printed in
the Register Pair [D,E]. Now everything is set up so we can
call the BDOS (at address 0005H) and CP/M will print along
until it finds a Dollar Sign. After the printing is done, we end
the program by returning to the Caller (the operating system
- CP/M). Notice that the Message that we send also contains
the codes for a line feed and a carriage return before it finds
the Dollar Sign that delimits this message.

Pretty straightforward, right? Yep! As a matter of fact this

Lifelines/The Software Magazine, Volume II, Number 12

Let me help out by showing you how I tried to resolve this
problem. I thought that by simply redefining the starting
point of the program I could solve my problem and have a
subroutine that could begin at B100H. In Listing 2 you can see
how I changed the code.

As you see, the only change was to the ORG statement. Now
the address of MSG is truly where it will be in memory.
However, I was surprised when after it successfully compiled,
it didn't LOAD the way I thought it would. Would you
believe that this little .ASM file (that STAT tells me uses one
record and 2k) turned into a monster after it went through the
LOAD program? The .COM file that ensued was 353 records
and took up 46k of my precious disk space. Besides, after try-
ing to run it as is, I received the cryptic CP/M message BAD
LOAD on my screen.

A little looking in the Digital Research manuals uncovered
the problem. And I quote, "Further, the addresses in the hex
records must be in ascending order; gaps in unfilled memory
regions are filled with zeroes by the LOAD command as the
hex records are read. Thus, LOAD must be used only for
creating CP/M standard "COM" files which operate in the
TPA." Well, if I continued to create subroutines under this

(continued next page)
41

When we load BASIC into the TPA we must remember to tell
it not to overlay our subroutine. We do this and test out our
program at the same time with the statment:

A>MBASIC PRINTHI /M:&HB100

method I would quickly run out of disk space, so I would
have to find another way.

The Solution That Was

This tells BASIC not to use any location higher than B100H
and to execute the program "PRINTEST". After all this we
find out that we were successful and our subroutine works.

(Editors Note: Next month, look for Gregg Knott's loader, to
put this subroutine into memory along with MBASIC.)

The correct approach was to compile a program that was ad-
dressed relative to the beginning of the TPA - except for those
areas that would need to be different if the program was
moved. This would enable LOAD to deliver a normal sized
.COM file and would allow for some relocatability.
Relocatable assemblers mark the addresses that have to
change; the linking loaders that accompany these assemblers
change these addresses as the .REL files are loaded. Since
ASM and LOAD do not perform this function the program-
mer has to do it for them. With the inclusion of two EQUate
statements and the use of a "relocator" constant we can suffi-
ciently fake out ASM and LOAD and get our relocatability.
Because of our deception I like to think of these routines as
"Pseudo-Relocatable". The final subroutine is in Listing 3.

The first EQUate statement is used to define the actual "re-
located" start of the subroutine. All addresses that meet the
"change" requirement due to relocation must be relative to
this address. To get the amount of relocation required we
subtract the subroutine start address from where we pres-
ently are in the program with our second EQUate statement.
This equation here is LOC-$, which translates to B100H
minus our current location (that's what the '$' means) of
100H. The result is a "relocator" constant that I have called
"Z". If this relocator constant is added to all of the "change"
addresses throughout the program they will assemble with
the proper address locations. Look at the LXI statement now.
We changed it by adding the relocator constant to it and now
note that it assembled to the correct address of B109H that we
were looking for. Voila! We now have what we wanted all
along.

The Proof

Listing 1 ; PRINTLO MESSAGE PRINT SUBROUTINE

; THIS IS THE SIMPLE ROUTINE

0100 PRINTLO ORG 0100H ;BASE ADDRESS
0100 0E09 MV I C ,9 ;CP /M PRINT FUNCTION
0102 110901 LXI D,MSG ; [D ,E] — > MESSAGE
0105 CD0500
0108 C9

CALL
RET

0005H ;LET BDOS PRINT IT
; RETURN TO CALLER

0109 2A48492A MSG DB 1 *HI* 1

010D 0A0D24
0110

DB
END

0AH,0DH, 1 $ 1

PRINTLO

Listing 2
; PRINTRY MESSAGE PRINT SUBROUTINE

ONLY CHANGED ORGI'D LOCATION SO ROUTINE
COULD BE RUN AT MEMORY LOCATION B100

B100 PRINTRY ORG 0B100H ;BASE ADDRESS
B100 0E09 MV I C ,9 ;CP /M PRINT FUNCTION
B102 1109B1 LXI D,MSG ; [D ,E] — > MESSAGE
B105 CD0500 CALL 0005H ;LET BDOS PRINT IT
B108 C9 RET ; RETURN TO CALLER

B109 2A48492A MSG DB 1 *HI* 1

B10D 0A0D24 DB 0AH,0DH,
B110 END PRINTRY

Listing 3
; PRINTHI MESSAGE PRINT SUBROUTINE

; ADDED EQUATES AND USED OFFSET ADDRESSING
; TO MAKE "PSEUDO-RELOCATABLE" AT B100

0100 PRINTHI ORG 0100H ; BASE ADDRESS
B100 = LOC EQU 0B100H ; ROUTINE ADDRESS
B000 = Z EQU LOC-$; ADDRESS " RELOCATOR"
0100 0E09
0102 1109B1
0105 CD0500
0108 C9

0109 2A48492A
010D 0A0D24
0110

MV I
LXI
CALL
RET

MSG DB
DB
END

C, 9 ;CP /M PRINT FUNCTION
D, MSG+Z ; [D ,E] — > MESSAGE
0005H ; LET BDOS PRINT IT

; RETURN TO CALLER

1 *HI* 1

0AH,0DH, * $ '
PRINTHI

To test this subroutine we can load it to the proper location
by the use of DDT as follows:

A>DDT PRINTHI.COM
DDT VERSION 2.2
NEXT PC
0180 0100
-M100,110,B100
-GO

What this does is start DDT with our pseudo-relocatable
subroutine loaded at 100H. We move the subroutine (which
happens to assemble into only 16 bytes) with the M com-
mand, saying move locations 100H through 110H to location
B100H. Then we exit DDT with our command to GO to the
CP/M warm start location 0000H. We now have our subrou-
tine loaded where we wanted it. It is now time to test it out.
The following MBASIC program will work well enough:

10 * PRINTEST.BAS -- TEST PRINTHI
20 PRINTHI%=&HB100
30 CALL PRINTHI%
40 END

The April issue was placed into the mail on March 25th. If
you had any problem with the timeliness of this issue, please
call our Subscription Department at (212) 722-1700, or write
to Lifelines/ The Software Magazine Subscription Depart-
ment, 1651 Third Ave., New York, N.Y. 10028. We expect to
place this issue, dated April 1982, into the mail around April
26th. We will print each month the date of the previous issue's
mailing and would appreciate your help in tracking the
deliveries.

Notice

Lifelines /The Software Magazine, May 198242

UTILITY.STB is a program that will "strip" the line numbers
off of a Cromemco BASIC program and later add them
again. I have found it useful to use in combination with a text
editor if blocks of a program need to be rearranged. Unfor-
tunately it does not take GOTOs into account. If you need to
alter a program that uses GOTOs I would suggest using labels
instead of numbers.

TRADE.STB is a Structured BASIC version of an old
CPMUG game from volume 21. The game has been rewritten
to follow a structured format. There is not one Goto in the en-
tire program!

PRN-TEST.STB is a simple printer testing program.
David E. Trachtenberg

Change of Address
Please notify us immediately if you move. Use the
form below. In the section marked “Old
Address”, affix your Lifelines mailing label — or
write out your old address exactly as it appears
on the label. This will help the Lifelines Circulation
Department to expedite your request.

New Address:

NAME

COMPANY

STREET ADDRESS

CITY STATE

ZIP CODE

Old Address:

NAME

COMPANY

STREET ADDRESS

CITY STATE

ZIP CODE

CPMUG Volume 80, (continued from page 22)
80.16 2K SPEAR.STB Statistics program
80.17 6K SPELL.STB Part of spelling program
80.18 10K STAT.STB Statistics program
80.19 20K TRADE.STB Game prog with no

GOTOs!
80.20 4K TRANSFER.STB Part of spelling program
80.21 24K TREK.STB Yes, Startrek
80.22 16K TRK-HELP.STB More Startrek stuff
80.23 6K UTILITY.STB "Unnum" and renum

BASIC progs
80.24 40K WORDLIST.TXT Part of spelling program
80.25 2K X2.STB Statistics program
80.26 2K ZIPSORT.STB Part of mail list system

Prepared by Ward Christensen 04/82

editor to correct any misspelled words. Some other limita-
tions of the program are that words longer than 15 characters
are automatically put in the check file since the dictionary
won't store them properly; proper nouns may be stored in the
dictionary capitalized, but the spelling checker does not
check the text for capitalization.

DATE.STB, MMENU.STB, REC-EDIT.STB, REC-PRN.-
STB, ZIPSORT.STB and BACKUP.STB are all parts of a
mailing list program. It allows names to be entered, modified
and deleted. Printouts may be made of all the entered data,
mailing labels sorted by zip code or alphabetically and in a
membership list format. The program should be easy to cus-
tomize.

CONV-ASC.STB and CONV-BAS.STB were written to help
convert Microsoft and CBASIC programs into structured
BASIC programs. I have used them to help convert most of
the CPMUG games. Some limitations are that String func-
tions and disk I/O usually still need additional work. Also
CBASIC programs that do not have sequential line numbers
or line numbers that are too close together will not convert. I
found that about two-thirds of the programs will run prop-
erly after being "put through" the conversion programs; the
others require additional modification.

STAT.STB, X2.STB and SPEAR.STB are all statistics pro-
grams using standard algorithms.

TREK.STB and TRK-HELP.STB are part of a new Startrek
program that I wrote that is based on every other Startrek
program that I have ever used.

GRADER.STB uses the algorithm by Donald Goodman and
Sandra Schwab published in Creative Computing to
calculate the Fog Index and the Flesch readability scale. The
program itself has been rewritten to operate on text files
rather than having someone type in text manually in a special
format.

SORTS.STB was inspired by the two-part article in August
and September 1981 Interface Age by Gene Cotton compar-
ing different sorting routines. It lets the users compare dif-
ferent standard sorting routines done on an array of random
numbers. The procedures may also be used in other pro-
grams.

Lifelines/The Software Magazine, Volume II, Number 12 43

A Review of TURBODOS
(continued from page 16)
gram command line) to the FIFO. This
is in fact a network transfer, using the
high-speed Z80 block moves of our net-
work drivers, and occurs in somewhat
less than one character time. Since the
destination FIFO is RAM-resident, the
error-return from the master processor
is done with no disk access necessary,
yielding an extremely high rate of
transfer. As a result we now have the
ability to record incoming data from
our serial device, at a relatively high
speed (about 1800 baud), with a capa-
city limited only by the capacity of the
disk.

System Security

etc.) must log in via this BDOS call,
whether or not it is associated with a
console.

"RENAME OLDFILE.NAM NEW-
FILE.NAM". Secondly, RENAME al-
lows wildcard file specifications on
both the source and destination names.
When used in this way, wildcard char-
acters used in the NEWFILE argument
indicate that the corresponding charac-
ters of each old file name are to be used
in renaming each file. For example, the
command "RENAME *.BAS *.OLD"
will rename all files of type BAS to type
OLD.

SET, SHOW. These utilities are used
to manipulate file attributes. The SET
utility allows any or all supported file
attributes to be set using a mnemonic
letter. SHOW displays the attributes.
Both allow wild-card file specifica-
tions.

In addition, utilities are provided for
setting and displaying time and date,
dynamically altering disk buffering
parameters, displaying drive charac-
teristics, initializing and copying disks,
resetting slaves, typing out ASCII files,
testing disks, and dumping files in com-
bined hex and ASCII format.

Pitfalls

System Utilities

Beside the utilities already mentioned,
there are a number of other utilities
provided, which Ill describe now.

COPY. This is the TURBODOS re-
placement for CP/M's PIP.COM. It
lacks the text formatting capabilities of
PIP, but does provide a number of new
features. COPY will accept wildcard
filename specifications (as do most
TURBODOS utilities), and allows
command-line options to specify
source and destination user number,
select non-archived files only (TURBO-
DOS always resets the "archived" attri-
butes of files when they are written to),
delete each file from the source disk/
user after it is copied, and allow a
destination disk to be changed if it be-
comes full. Another feature of the copy
program is its ability to rename files
(when wildcards are specified) as they
are copied. For example, the command
"COPY *.BAS B:*.OO1" will copy all
the files with type BAS to the B drive,
and rename them with type "001" at the
destination.

AUTOLOAD. This utility writes its
command tail to a file named "AUTO-
STRT.AUT" in a special format that
permits the command line to be exe-
cuted at initial cold-start and/or warm
start. By renaming AUTOSTRT.AUT
to WARMSTRT.AUT, the user will be
forced to execute the specified com-
mand line at each warm start (which
occurs whenever a transient program
completes execution). The correspond-
ing action for initial system cold start is
done by naming the file COLDSTRT.- x
AUT.

DIR. This is similar to the resident
DIR command of CP/M. It prints an
alphabetically sorted listing, displays
the amount of free space on the disk,
and reports the size of each file. Also
DIR displays the disk label, which may
be created using the LABEL utility.

RENAME. This utility renames files.
It's similar to REN of CP/M, with a
couple of major differences. First, the
syntax is reversed; the CP/M syntax is
"REN NEWFILE.NAM = OLDFILE.-
NAM" while RENAME syntax is

TURBODOS may be configured at sys-
tem generation time so that users are
required to log in before using the sys-
tem. Two utilities are provided to sup-
port this feature, LOGON and LOG-
OUT.

The LOGON program must exist in the
logged-out user area of the disk (an
area specified at system generation
time), and, for proper security, should
be the only executable file in this area
on any drive. LOGON prompts for a
user I.D. and password, which it vali-
dates against a system file named
"USERID. SYS". USERID. SYS is
created with a text editor, and contains
entries of the form

USERID,[PASSWORD],USERNO[T"],[DRIVE]

where items in brackets are optional.
The "P" option specifies a "privileged"
user, who may, among other things,
change user areas, and reset slaves.The
P option also sets a flag in the operating
system that can be queried via a system
call, to allow a program to determine
whether a user is privileged.

If the LOGON program finds the file
"SYSLOG.SYS" in the logged-out user
area, it will record usage information
(name, date, time, etc) in a random-
access disk file.

The LOGOFF utility changes the cur-
rent user area to the logged-out user
area, and posts a "logged-out" entry to
USERID.SYS (if it exists).

Logon and logoff functions are also
supported by BDOS calls. In fact, any
system process that requires access to
privileged functions (such as set user,

As you've probably guessed, I'm very
enthusiastic about TURBODOS; I've
used it daily for several months, and
am impressed with its power and reli-
ability. Yet there are a few potential
problems that an informed buyer
should beware of.

CP/M Incompatibilities

TURBODOS does not maintain an in-
memory disk allocation map, as CP/M
does. For that reason, programs using
27 ("return disk allocation address")
will not run correctly under TURBO-
DOS. The only programs I know of
that use this function are the CP/M
STAT utility and the public domain
"SD.COM", both of which use this
function to report free disk space (both
of which also fail miserably when ex-
ecuted under TURBODOS). The TUR-
BODOS function 27 does return the
number of free disk blocks, but pro-
grams must be modified at the source
level to take advantage of this. I was
able to make the necessary changes to
SD in a few hours.

A more serious problem occurs with
programs that make use of the CP/M

44 Lifelines/The Software Magazine, May 1982

unlock drives, and lock and unlock
printers.

The following system calls exist, and
are listed in the manual, but are not
available for use without help from
Software 2000: reset network, send
message to network, receive message
from network, allocate memory seg-
ment, de-allocate memory segment,
send and receive inter-process message,
delay process, create process, and ter-
minate process.

Disk Allocation

The Future of TURBODOS

I recently spoke with one of the two
TURBODOS archi tects , Ronald
Raikes of Software 2000, about his
firm's plans for the continuing devel-
opment of the operating system.

A full master-to-master networking
system, supporting slaves with local
disk storage, should be available soon.
This will be revision 1.2 of TURBO-
DOS, and is currently in the final test-
ing stages. Additionally, many of the
utilities will have enhanced features.

Another major release of the operating
system (revision 1.3) is planned for
later this year. This version will sup-
port bank-selectable memory, and an
additional console per CPU. Mr.
Raikes stressed that while he will sup-
port multiple consoles, a more impor-
tant goal is based around a single con-
sole with two banks of memory, using
one bank of memory for a "deluxe" op-
erating system, and allowing a large (63
Kbyte) transient program area in the
other.

Release 1.4 of TURBODOS will sup-
port a nested directory structure,
similar to that of UNIX.

disk parameter block to determine the
physical disk characteristics. TUR-
BODOS does not support the CP/M
disk parameter block, and the associ-
ated system call (number 31) returns
the TURBODOS-compatible disk in-
formation (again, a competent systems
hacker can modify a program at the
source level to use the TURBODOS
format). The programs I know of that
do not work properly because of this
problem are the public domain DU,
SAPX and FINDBAD disk utilities, and
the commercial diagnostics package
RECLAIM.

Another potential problem occurs
when TURBODOS disk drivers are set
up with reserved tracks (I do this to
maintain CP/M compatibility). Al-
though a complete BIOS jump table is
simulated by the system, the "set track"
subroutine cannot set a track within the
reserved track area. This caused a par-
ticularly frustrating problem with my
own IBM disk-reader program; those
tracks within the CP/M reserved track
area were just not available. The only
solution was to add two "pseudo-
drives" ("G" and "H") to the system,
which are, in fact, the same physical
drives as our floppy "E" and "F", but
with no reserved tracks.

The only commercial package that I
know of that would not function be-
cause of this reserved track problem is
the REFORMATTER package, a disk
utility for IBM-format disks.

The disk allocation map is maintained
on the disk, providing a high degree of
file integrity when compared to sys-
tems that maintain this information in
memory. I've found that, under TUR-
BODOS, if I forget to close a file (or, if
my program dies before it reaches the
file close subroutine) no data is lost.

Dispatching

TURBODOS employs an interrupt-
driven dispatcher to perform task-
swapping in real-time. As far as I can
tell, all processes receive the same
priority, and are switched in a round-
robin fashion. The dispatcher may be
accessed from within any user-supplied
modules via the WAIT and SIGNAL
routines (also known as P and V in con-
current programming). These routines
may be called by name within driver
code (they must be declared as exter-
nals), and are passed EVENT SEMA-
PHORES as arguments. When WAIT is
called, the semaphore counter is decre-
mented, and, if the count is negative,
the calling process is removed from the
ready list until some other process calls
SIGNAL with the same semaphore.
Generally, the dispatcher overhead is
such that a significant speed improve-
ment is realized in slave CPUs by omit-
ting the dispatcher altogether (this is
done by selecting a non-multitasking
STDSLAVE at system generation
time).

Device Drivers

Technical Information

The following section contains infor-
mation that may be useful to program-
mers who want to implement the oper-
ating system, or write transient pro-
grams running under it.

Extended BDOS Calls

Operating System Overhead

A problem related to operating system
overhead occurs with programs (such
as WordStar) that make frequent BIOS
calls to test console status. This test,
under CP/M, involves perhaps a half-
dozen machine instructions. TURBO-
DOS, however, converts these calls to
system calls, which carry the overhead
of hundreds of machine instructions.
The result is that such programs run
much more slowly under TURBO-
DOS.

In the particular case of WordStar, the
rate of console status checking can be
adjusted by the user (this is detailed in
the WordStar manual). A documenta-
tion supplement for TURBODOS from
Software 2000 points this out, and pro-
vides details for adjusting WordStar to
fit TURBODOS.

In addition to the system calls provided
with CP/M 2.2, a number of other use-
ful functions are designed into TUR-
BODOS. Aside from those I've already
mentioned, system calls are available
to set and return the date and time (us-
ing a binary rather than BCD format),
set and return disk buffer parameters
(both the size and the number of buffers
may be specified), disable or enable the
AUTOLOAD feature, load a program
into memory (starting at the current
DMA address; this allows overlays to
be directly supported by the operating
system), rebuild the disk allocation
map, flush the disk buffers, lock and

Complete programming specifications
are provided in the documentation set.
I've found them to be relatively com-
plete, and have had no trouble writing
device drivers for such things as an IBM
card punch, a NEC printer, a PMMI

(continued next page)
Lifelines/The Software Magazine, Volume II, Number 12 45

able hardware initialization module,
with the process entry point passed in
the DE register pair. The new process
will then begin life with a 48-level
stack, and its own set of registers,
which are maintained between task
swaps by the dispatcher.

All processes have access to the system
as if they were the only running pro-
gram in the system. System informa-
tion such as the current DMA address,
default drive, and current user number
is maintained within the process de-
scriptor of each process, and can be
freely changed without affecting any
other process in the system. System
calls must be made by calling the global
"OSNTRY", following the parameter
passing conventions of "normal" tran-
sient programs. The only restriction is
that all processes must not make use of
the X index register.8

modem, DJ2D floppy disks, and a
Godbout System Support I clock/in-
terrupt system, entirely from the de-
tailed specifications (along with a little
help from the supplied sample driver
listings).

Interesting but as yet undocumented is
the capability of the system to make re-
cursive system calls from within itself
(at the driver level). A recursive entry
point, "XECFCN", is available for this
purpose, and can be used to access any
of the system calls. It should be possi-
ble, using this entry point, to perform
disk reads and writes from within con-
sole drivers. Extreme care must be
taken to avoid such problems as mu-
tual lockout (calling disk functions
within disk drivers at certain critical
points will effectively block a process
because of built-in mutual exclusion
mechanisms) and changing the calling
programs DMA address and user num-
ber, without restoring them.

usually necessary when a program is
updating a random record; until the
update is complete, all other users must
be denied access, to avoid reading in-
consistent data.

3June, 1981 issue.

4CP/NET, a networking system for
MP/M, was available at the time from
Digital Research, but the preliminary
system information we were able to ob-
tain at the time was sketchy; we could
not get enough details to allow a rea-
sonable evaluation.

5I should note here that Software 2000
requests end users to report problems
to the dealer from whom they pur-
chased the system (MuSys in our case);
if for some reason the dealer cannot re-
solve the problem, it then is the dealer's
responsibility to put the end user in
contact with Software 2000.

6There is a fundamental difference be-
tween TURBODOS and MP/M with
respect to the "pass command line" sys-
tem call that should be noted here.
While MP/M immediately executes the
passed command line, TURBODOS
"stacks" the line, and will not execute it
until the calling program terminates.

7A similar capability now exists for
CP/M, using my SUPERSUB program
(see the January, 1982 issue of Life-
lines).

8This is a system-wide requirement in
all drivers and processes. Transient
programs, however, are controlled by a
module called "LOCUSR", which sup-
ports "private" X-register usage, as well
as a simulated BIOS jump table.

References

Trinter spooling generally refers to the
technique of sending printer output to a
disk file (or other storage medium) for
later "despooling"; it usually takes the
form of a background process in the
master processor that selects the
spooled files, one by one, for output to
the printer. This technique allows or-
derly access to system printers, and is
usually transparent to the user (de-
spooling takes place concurrently with
other system operations).
2File lockout refers to the ability of an
operating system to allow exclusive ac-
cess to a file for certain programs (or
users), and denv all others. This is

Background Processes

User-written background processes are
supported under TURBODOS, but the
documentation as yet provides little in-
formation in their use. Since I had a
need for using a background process, I
had to contact my dealer (Musys
Corp.) He in turn referred me to Soft-
ware 2000, who provided all the infor-
mation I needed.

Background processes must be linked
into the operating system at system
generation time. An explicit call to the
operating system 'create process" func-
tion must be made in the user-change-

Renew
The April issue was placed into the mail on March 25th. If you had any problem with the timeliness of this issue, please call
our Subscription Department at (212) 722-1700, or write to Lifelines/ The Software Magazine Subscription Department,
1651 Third Ave., New York, N.Y. 10028. We expect to place this issue, dated April 1982, into the mail around April 26th.
We will print each month the date of the previous issue's mailing and would appreciate your help in tracking the deliveries.

If your subscription began last June, we're expecting to hear from you within the next few weeks.

If you don't renew right away, you'll miss some important reviews we have planned for the next few issues: Pascal/Z, Janus
Ada, SB-80, VEDIT, MicroPlan, and more!

And incidentally, our price is going up with the June issue. Subcribers are being offered a last chance to get Lifelines/ The
Software Magazine at the present rate.

So fill out that form you've received in the mail. Send your check right away. Or you can get out your VISA or MasterCard
and call Lifelines/The Software Magazine Subscription Dept, at (212) 722-1700. The address is: 1651 Third Ave., New
York, N.Y. 10028.

Lifelines/The Software Magazine, May 198246

Opinion ______
Letters

To Set The Record Straight
work with most diskette types and for-
mats — and that they are not limited to
some special disk controller, or 8"
SS/SD disks only!

This is also the reason why we wrote
these utilities. After having searched
around for general disk utilities which
could be used with all our various disk
formats — without finding any at all —
we decided to write our own. We have
now released a complete package of
five well documented, user-friendly
disk utilities. We also plan to release
new versions which will also work with
any hard disk format.

The reviewer of our software seems to
be heavily biased against any utility for
CP/M offered for sale — on the alleged
ground that a similar utility can always
be found in the public domain.

Regards,
Terje B01stad
Elektrokonsult AS
Konnerudgaten 3,
N-3000 Drammen, Norway.

A Plea

complete technical information (Man-
ual and schematics) which 111 make
available if needed.

Sincerely,
Ron Tipton
The Systems Shoppe
Greenwood, Missouri

Correction

March 13, 1982
Lifelines:

Just a comment on Mr.* 1 Harnell's letter
to me. I am not deserving of all the
credit he gives me. It is other people
who have taken my programs, and
made them more useful: Mark Zeiger
and his version 7 of MODEM, Keith
Petersen, who wrote XMODEM be-
cause I was unwilling to admit people
would have trouble remembering
'MODEM SQ filename" (if they forgot
the "Q" while running on a remote
CP/M system, the transfer won't
work), and Ron Fowler, who turned
my single-density-only disk utility
"DU" into one that can handle virtually
any 1.4 or 2.2 disk format or density.
(See DUU on CPMUG Volume 78).

Just wanted to set the record straight.

Ward Christensen

A Reply

March 17, 1982
Dear Sir:

In "Tips and Techniques" of Volume 2,
number 10, you explain a method in-
terrupt-enable flag testing. Due to a
bug in the Z80, this method will not
work. The LD A,R or LD A,I instruc-
tions are supposed to set or clear the
parity flag to reflect the state of the
CPU's interrupt enable flag. If inter-
rupts are enabled, and an interrupt oc-
curs while the LD A,R (or LD A,I) is
executing, the parity flag is not set
properly. The current Zilog and
Mostek manuals do not mention the
problem (I wonder if future manuals
will?). It is mentioned in Dr. Dobbs
Journal, Number 58, August 1981 on
page 40.

This bug will cause random system
crashes which may be impossible to
troubleshoot. We discovered the prob-
lem while debugging some code
which contained the LD, A,I instruc-
tions running in a tight loop. The
system crashed every few seconds, and
the problem was finally traced to the
LD A,I.

Sincerely,
Jim Freeman
NH Research, Incorporated

Editor's Note: We also thank Wayne
Farmer of San Diego for pointing this
out.

March 8, 1982
Dear Editor,

Thank you for letting Mr. Jim Mills
review our disk utilities DDUMP and
DTEST in the February (82) issue of
Lifelines.

Mr. Mills is quite right in saying that
our utilities will probably not do much
more than some readily available pub-
lic domain disk utilities for CP/M (e.g.,
from CPMUG), but that is only true for
8" single sided, single density (SS/SD)
diskettes (as Mr. Mills uses) or for a
very limited number of particular disk
controllers. If you use some other disk
format, the CPMUG or other public
domain utilities may not be of much
use to you. We use Zenith/Heath
CP/M, which supports no less than 10
different disk formats.

I was surprised to see that Mr. Mills
totally missed this MAIN point about
our disk utilities; namely that they

March 19, 1982

Dear Sir:

I'm writing to ask your help in finding
an S-100 interface card to a CalComp
model 114 disk drive. These drives
(which originally cost about $20,000)
are mechanically very rugged and the
removable disk packs can each store
about 30 MBytes. This drive, unfortu-
nately, does not have an SMD inter-
face.

I thought I had found an electronic de-
velopment company on the West Coast
to build the interface but the press of
other business has shelved the project
for two years with no completion date
in sight. Hence I'm again looking for a
supplier.

There were thousands of these drives
built and they are now being replaced
by newer technology so it seems there is
a good market for an S-100 card. I have

Lifelines/The Software Magazine, Volume II, Number 12 47

A Spelling Program (continued from page 11)
8080 Compatible Code for Spelling
Correction

spell7 pop hl
pop de
pop be
or 255 ;set nz flag
ret

;spell8 compares two words, word pname in de, known word atom in hl
;b - grace, c - length of word, both unchanged

;the main function of spell8 is to manage the values of the grace
;and word length, and to call compchar.

spellS push be ;save grace and length
push de
call edr ;pname of known word
Id a,(hl) ;length of known word
sub c ;known length-unknown length
jp z.spll
jp c,spell2 ;get -(abs) of difference
cpl
inc a
ret

ccl dec hl ;stutter
Id a,(de)
cp (hl)
inc hl
jp nz,cc2 ;brif not stutter
dec hl
dec c
ret nz
inc c
ret

cc2 inc hl ;omitted
Id a,(de)
cp (hl)
dec hl
jp nz,cc4 ;brif not omit
inc hl
ret

cc4 dec b ;unknown error type
ret

Misspellings As Run Through SPELL

Here are the most commonly misspelled words as reported in Thomas C.
Pollack and William D. Baker, The University Spelling Book, Englewood
Cliffs, New Jersey: Prentice-Hall, 1955. The misspellings are my own.

I have included the following listing of 8080 compatible
code for doing spelling correction. It is abstracted from the
source code for The Stiff Upper Lisp. It is presented here
for those readers who may be interested in experimenting
with spelling correction or in improving on the algorithm.
The code presented here is for comparing an unknown
word to one candidate word. If they match, the zero flag is
set. I would be eager to hear from any readers who pro-
duce improved spelling correctors.
spe!12 add a,b ;grace-difference
jp nc,spel!3 ;brif no grace left
jp z,spe!13
Id b,a ;new grace to b

spll inc hl
spell5 call compchar
Id a,b ;check grace
and a
jp z,spell3 ;brif no grace left
dec c ;dec length
jp z,spell4 ;brif words matched
inc de
inc hl
jp spell5

spell4 pop de
pop be
xor a ;set z flag
ret

spell3 pop de
pop be
or 1 ;set nz flag on no match
ret

compchar is the function that does the real work in the spell
routine.

compchar compares 1 char from 2 strings for approximate equality
the following discrepencies are ignored:

2 chars transposed — apepnd
repeated char — appennd
omitted char — appnd
extra char — appexnd

other discrepencies count against a match. if too many discrepencies
are found, relative to the length of the word, the strings do not match.
c - length, b - grace factor, de - ptr to word, hl - ptr to known word

Misspelling Correct Spelling Output of SPELL

accomodate accommodate -► accommodate
achievement acheivement -* acheivement
aquire acquire acquire
amog among nil
aparent apparent -* apparent
apparant apparent -► apparent
arguement argument nil
argueing arguing -► nil
beleif belief -* belief
beleive believe -»■ believe
benificial beneficial -*■ beneficial
benefitted benefited -♦ benefited
catagory category -► category
comming coming -* nil
comparitive comparative -► comparative
conscous conscious -* conscious
contriversy controversy -* controversy
contriversial controversial -> controversial
definately definitely -► definitely
definitly definitely -► definitely
dephine define -► nil
discribe describe describe
descrition description -► description
disasterous disastrous disastrous
embarass embarrass embarrass
envimment environment -* environment
exagerate exaggerate -► exaggerate
existance existence -*t existence
existant existent -► existent
expereince experience -► experience
explanation explanation -► explanation
fasinate fascinate -► fascinate
hieght height -► height
intrest interest -► nil
lead led -> nil
loose lose -► nil
loosing losing -► nil
marrage marriage marriage
mear mere -► nil

compchar Id a,(de)
, cp (hl)

;transpose
inc de
Id a,(de)
dec de
cp (hl)
jp nz,ccl ;brif not a transpose
inc hl
Id a,(de)
cp (hl)
dec hl
jp nz,cc3 ;brif not transpose, must be extra
inc hl ;advance 1
inc de

cc3 inc de
dec b
dec c
ret nz

;spell
;subr (spell <misspelling> <correctspelling>)
spell call ispell
Id hl,nil
ret nz
Id h,d
Id l,e

.•internal version of spell

ispell push be
push de
push hl
Id b,grace ,’grace
call edr ;get ptr to pname
Id a,(hl) ;length to a
Id c,a ;length to c
cp 9 ;decrease grace for short words
jp nc.spelll
dec b
cp 5
jp nc.spelll
dec b

spelll inc hl ;ptr to string to de
ex de,hl
call spell8 ;compare one known word to word
jp nz,spell7 ;brif no match
pop hl
pop de
pop be
xor a ;set z flag
ret

Lifelines/The Software Magazine, May 198248

nesessary
ocasion

necessary -*■
occasion

necessary
occasion

accomodate
accomodate

accommodating -
accommodation

occured occurred occurred aparent apparatus
occured occurred occurred aparent apparel -♦
occurence occurrence occurrence aparent apparition -♦
occurrence occurrence occurrence aparent apparitor -»■
occurence occurrence -* occurrence beleive belief -*
oppinion opinion nil beleive believable -*■
oportunity opportunity opportunity beleive belike
pade paid -*■ nil beleive belittle
perticular particular particular comparitive comparable -*
particuler particular particular comparitive comparatist
perticuler particular particular comparitive comparativist
preformence performance -*■ performance comparitive comparator
personall personal personal definitly definiendum -+
personel personnel personnel definitly definiens
personnal personnel personnel definitly definition -►
personal personnel nil definitly definitive -*
posession possession possession embarass embargo
possesion possession -*• possession embarass embark ->
posesion possession -► nil embarass embarrassedly -*
posible possible possible embarass embarrassingly -
possable possible -*■ possible lead lectotype -►
posable possible nil lead lecture -*
practicle practical -* practical lead leda
preceed precede -► precede lead lederhosen
pregudice prejudice -* prejudice nesessary nebulous -*
prepar prepare prepare nesessary necessarily -♦
prevelent prevalent prevalent nesessary necessarianism
principle principal principal nesessary necessitate
principal principle -► principle occurrence occupy -»■
privelege privilege -*• privilege occurrence occur -*
probaly probably probably occurrence occurrent -*
procede proceed proceed occurrence ocean
proceedure procedure -*■ procedure perticular participle -*■
proffessor professor -*■ professor perticular particle -*■
proffession profession profession perticular particularism -*■
prominant prominent -*■ prominent perticular particularity
persue pursue -► pursue preformence perforated
quite quiet -»■ quiet preformence perforation -►
recieve receive receive preformence performative
recieving receiving -* receiving preformence performer
recomend recommend -► recommend posession possessed -►
refering referring referring posession possessed
repitition repetition -* repetition posession possessive
rythm rhythm rhythm posession possessory
sence sense sense posable posset -►
seperate separate -*■ separate posable possibility -*■
seperation separation -*■ separation posable possum
shinning shining nil posable post -*■
similer similar -* similar prevelent prevailing -»■
studing studying studying prevelent prevalence
suceed succeed succeed prevelent prevaricate -*■
suprise surprise nil prevelent prevenance
technique technique technique procede procedural
thier their -♦ their procede procedure
through thorough -► nil procede proceeding
transfered transferred transferred procede proceeds -*
unecessary unnecessary -* unnecessary persue purslane -*
unnesessary unnecessary unnecessary persue pursuance
unesessary unnecessary unnecessary persue pursuit -*
villin villain villain persue pursuivant
writting

count = 104

writing ->

matches =87

nil seperation
seperation
seperation
seperation

separable
separate
separationist
separatism -*

Comparison of Misspellings with Close Words suprise
suprise

surprint
surprisal -►

In an attempt to determine if the algorithm for the SPELL function is too suprise surprising -►
forgiving, the four words in the dictionary that were closest to the target suprise surra -►
word were compared with misspellings of that word. Misspellings were through thorny
selected from the other spelling list; every fifth misspelling was used. This through thoron
test may be somewhat misleading in that words that are not alphabeti- through thoroughbass ->■
cally close to another word may be matched by SPELL. through

villin
thoroughbrace -
villager

Misspelling Close Word Output of SPELL villin
villin

villiagery
villainess -►

accomodate acclivity nil villin villainous -►
accomodate accolade -♦ nil count =88 matches =3

49Lifelines/The Software Magazine, Volume II, Number 12

Product Status Reports

New 8080 object files are transferred to the
target 8086 system by entering the
name of the program object file and the
optional fields (those normally entered
when the program is executed on an
8080 system).

I/O runs at operating system speed, so
that programs mostly interacting with
system peripherals will run as fast as
on the original 8080 system. However,
compute bound programs (or number
crunchers) will execute much more
slowly.

EM80/86 requires 4K of memory.

systems.

Programmer's Apprentice
The Software Group

This program generator is designed to
create fully debugged and commented
application programs in MBASIC
source code. Applications programs
are menu-driven, and additional oper-
ator prompts can be provided. Pro-
gram linking can result in application
systems to run on a variety of terminals
or memory-mapped desk top comput-
ers. Recursive data entry techniques
are intended to speed program creation
and data entry. Field definitions can be
specified to an extent that will help
eliminate input errors in data entry.

Screens, report formats, and masks can
be designed interactively; report and
input screens are available either as
MBASIC source files or as print im-
ages, for ease of documentation. Modi-
fication, renaming, and saving of
screen images and data field definitions
for new or existing programs can take
place as required. The user's own source
code can be inserted for specialized
functions; macro and subroutine li-
braries are provided and extensible. 6
to 8K are required for storing a pro-
gram's attributes.

Reports can be directed to terminal,
disk, or printer at run time. They in-
clude page numbering, dating, format-
ting, dynamic page breaks, and user-
specified record selection.

The record retrieval system, called
Micro B + , uses automatic B 4- tree
balancing to fast search without sorts.
Indices are maintained without the
need for reorganization. Up to fifty
keys of 48 characters each are permit-
ted, each with multi-key, partial key
and concatenated keys. The number of
records allowed is 65,000. 50 fields per
record are allowed.

The Programmer's Apprentice runs
with a Z80, 8080, or 8085 CPU. I re-
quires 64K RAM, BASCOM Version
5.3, a memory-mapped or cursor ad-
dressable terminal, and CP/M-80.

Products
These products are available from their
authors, computer stores, software dis-
tributors and software publishers.

ASCOM
Dynamic Microprocessor Associates,
Inc.

The Asynchronous Communication
Control Program is a communications
facility for microcomputers running
under CP/M-80 (or a CP/M-80 com-
patible operating system), allowing
data transfer into and out of a serial
port. Communications parameters
such as baud rate and parity are set at
the command level, and ASCOM per-
mits file DiRectory, REName, DELete
and TYPE without exiting to the sys-
tem. ASCOM communicates with any
machine capable of asynchronous
communications.

Ma; features include a conversa-
tional mode option, interactive or
batched command processing, simulta-
neous print operation, receive and
transmit timeout, software parity
check, several protocols, and a special
help feature.

A 16K 8080 or Z80 microcomputer and
4K RAM are required. A knowledge of
assembly language may be necessary
for non-standard installation.

The Formula
Dynamic Microprocessor Associates,
Inc.

This application development tool is
intended to combine a data base man-
ager, a word processor, and a compiler
language, providing a "system lan-
guage" for business applications. Vari-
ous features simplify the creation of
program-like modules; free format re-
ports are generated from a visual de-
scription of the report, and file mainte-
nance and data entry routines can be
designed automatically using a descrip-
tion of the data.

The Formula contains an Indexed Se-
quential Access Method for data re-
trieval and executes object code mod-
ules. It also features a customizable full
screen editor, text highlighting and
underlining, user-designed menus,
multiple access keys to the data, report-
ing and updating with conditional test-
ing and algorithmic calculations,
DATE conversions for numeric calcu-
lations. File record layouts and report
descriptions can be generated.

The package includes a General Ac-
counting System consisting of General
Ledger, Accounts Payable, and Ac-
counts Receivable. Guidelines are
given on developing inventory and
mailing software.

The Formula runs with a Z80 or 8080
CPU, CP/M-80 compatible operating

EM80/86
Dynamic Microprocessor Associates,
Inc.

This emulator permits unmodified user
programs written for CP/M-80 to be
executed on an 8086/8088 running un-
der IBM Personal Computer DOS
(Seattle Computer Products' 86-DOS,
Lifeboat Associates' SB-86, Microsoft's
MSDOS) or CP/M-86.

Lifelines /The Software Magazine, May 198250

tion of CASM is included with the up-
date.

A new wild-card expansion utility,
named WILDEXP.C, allows ambigu-
ous file names to be specified on the
command line to C-generated pro-
grams; then by a simple function call,
the ambiguous references are expanded
to include all filenames on the current
disk that match the specification. Ex-
ceptions may also be specified.

A new utility named NOBOOT.C is
also included: when NOBOOT.COM
is invoked upon a COM file produced
by the C compiler, it will make changes
so that the COM file no longer per-
forms a warm-boot after completing
execution.

The following bugs have been detected
and corrected for BDS C vl.46:

1- CC1 had crashed when an ' in-
clude" file was not terminated with a
carriage-retum/linefeed sequence.

2- CLINK no longer complains about
being unable to find "DEFF3.CRL"
when there are undefined function
references in a linkage.

3- Literal strings having continuation
lines might have confused the CC1
preprocessor in some versions, so
that a " defined" symbol name that
happened to match a character se-
quence within the continuation line
of the string was incorrectly substi-
tuted for by the preprocessor, and
such a symbol appearing after the
end of the string was not substituted
for.

4- In the DIO package, the variable "c"
in the "getchar" function was incor-
rectly declared as a "char" instead of
an "int"; this caused a physical EOF
to be returned as the value 255 in-
stead of -1 when the text file was not
terminated by a CPMEOF (control-
Z) character.

5- Another DIO-related bug: when text
containing both carriage-returns and
linefeeds was fed to the DIO "put-
char" function, an extra linefeed
character was appended to each line
and resulted in an extra blank line
between each line of the output file.

6- CLINK now warns the user when the
address of the end of the external
data area falls above the effective
"top of memory" address to prevent
confusion if such a condition is not
noticed by the user.

7- The "execl" function had bombed if
an attempt was made to pass more

(continued next page)
51

but only with a special limited syntax
for the expression argument.

4- Nesting of conditional compilation
directives is now allowed, and incor-
rect nesting attempts will now draw
an appropriate error instead of doing
random things to the source text.
Note that each and every #else direc-
tive must be followed by a matching
#endif (unlike C's control structure
syntax, in which an if...else chain
may be extended as long as desired.)

These enhancements to the compiler
and linker affect the use of the com-
piler, not the C language syntax it ac-
cepts:

1- In the past, the compiler and linker
have performed a CP/M warm-boot
after every compilation had either
been completed or aborted due to an
error. Now a warm-boot will only
take place when the memory occu-
pied by the Console Command Proc-
essor (CCP) is actually needed for
the task. On certain "fake" CP/M
systems (I believe the CROMIX
CP/M emulator is one such case),
the non-warm-booting return to the
CCP does not work correctly, prob-
ably because the system does not
pass a valid stack pointer to transient
commands. Patches to correct this
are included in the manual addenda
for this version.

2- One feature of BDS C has been that it
automatically aborted any pending
"SUBMIT" file after compilation, if
an error had been detected during
the compilation. This feature is no
longer automatic, but is optional.

3- The compiler and linker now send a
bell character (control-G) to the user
console after completing a task in
which one or more errors have oc-
curred.

4- Patches are included in the new ver-
sion to repair the problem with type-
ahead during operation of CC1, CC2
or CLINK.

The major new utility program in-
cluded with this version is CASM.C,
an assembly-language-to-CRL conver-
sion preprocessor. CASM takes a
specially-formatted assembly language
source file with extension and puts out
an ".ASM" file which may then be as-
sembled using the standard CP/M as-
sembler (ASM.COM), to eventually
produce a CRL-format object file. A
separate document detailing the opera-

New Publication

Speaking Pascal: A Computer Lan-
guage Primer
By Kenneth A. Bowen
This is a simple introductory text, ex-
plaining the various components of
Pascal. Elementary and complex data
types, the use of control structures,
procedures and functions are dis-
cussed. Structured programming tech-
niques are used to create programs. Ex-
ercises and illustrations are provided to
help the novice along; in addition, an
appendix on UCSD is included.

New

Versions
Software authors are urged to send us
details on updates they release. This
way, users can keep informed of en-
hancements and bug fixes they may be
waiting for. If you don't find an update
report here, then the software author
hasn't forwarded it to Lifelines/ The
Software Magazine.

BDS C Compiler
Version 1.46

There have been several new sets of fea-
tures added to BDS C in this version, in
three categories: preprocessor en-
hancement, CP/M-specific compiler
performance improvement by selective
overwriting of the CCP (Console Com-
mand Processor), and new utility pro-
grams.

The preprocessor enhancements are as
follows:

1- Parameterized defines are now sup-
ported. This allows a macro in the
form of a function call to be ex-
panded (before compilation) into an
arbitrary string, with the original pa-
rameters substituted into the string.

2- One feature of "#define" substitution
has been slightly changed: when a
symbolic constant appears in the
definition of another symbolic con-
stant, then the substitution of the
first constant does not take place un-
til the substitution of the second
does.

3- The "#if < expr > " conditional com-
pilation directive is now supported,

Lifelines/The Software Magazine, Volume II, Number 12

than six parameters, and it had not
detected when the total size of sup-
plied parameters exceeded the
amount of space available for that
text during the chaining operation
(about 83 characters). Now any
number of parameters are handled
correctly, and a text overflow will
cause "excel" to print a special mes-
sage to that effect and also return a
value of ERROR (-1) to the calling
routine.

8- The "gets" library function has been
modified to use the stack during its
BDOS call to get a line of text, and
then copy the result into the supplied
buffer area. A new alternative to
"gets" has been supplied, called "get-
line", which works just like the "get-
line" function shown in Kernighan &
Ritchie.

More details on all these changes are
supplied in the new User's Guide Ad-
denda.

PLAN80
Version 2.2a

This update features a minor change to
ensure that the depreciation routines
operate with the TOR statement. Un-
der 2.2 the depreciation calculation
routines did not properly ignore rows
or columns excluded by a TOR state-
ment.

T/MAKER II
Version 2.5.3

When a "move column" command was
used in the editor in a situation where
the new location for the column was to
the right of the current location, the old
location was deleted before the column
was inserted into the new location.
This resulted in a shifting of the line
which sometimes meant that the col-
umn was not inserted in the place you
probably wanted it to be. Now the col-
umn is copied into its new location be-
fore the old is deleted.

has been added. The cost accounting
and name and address features have
also been added in doctor and dentist
files. The name and address changes
are also effected in insurance company
files.

Billing messages now can contain up to
sixty characters, and an advertising
message is permitted on statement print
runs. Procedure code files and diagno-
sis code files now support 8-digit alpha-
numeric codes with 2-digit modifiers;
descriptions may now be thirty charac-
ters.

Patient escrow account balances reflect
the true account balance of the respon-
sible party. Special funds can be held in
escrow by adding the proper amounts
to a case in file. There are now nine op-
tions for billing and types of accounts,
ranging from "no statements to be sent"
to "past due account sent out for collec-
tion".

Patients now may be located by ac-
count number or last name; a
SOUNDEX coding system permits the
operator to enter a partial spelling of
the last name.

Charges now allow for a primary and
secondary diagnosis, and an unlimited
number of charges are allowed per
case. All treatment charges are printed
together on insurance forms; depart-
ment cost accounting has also been
added in this category, on cases for
more advanced income tracking on
general ledger postings.

Pre-planned time payments are per-
mitted now on each case, running from
cash in advance through sixty months
of equal payments. Automatic interest
of late fees can be calculated at the end-
of-month billing cycle and added to
cases not currently paid up.

Single items may now be edited in the
case or charge item; additions can also
be made. Adjustments can be made for
negative amounts.

Reorganization of indices is only per-
formed at the end of the day, saving
time during peak hours.

Inter-office reports have been moved to
the master report section for conve-
nience; some changes have been made
so that printing reports is easier, and
can be halted if necessary. Monthly

statements now print a single summary
line per case with all total charges
added together. More medical in-
surance forms have been added to
those supported, as well as two dental
insurance forms.

Advanced linking of case and charge
files will provide an increase in avail-
able disk space, where there are more
than two charges per case.

Bugs

Postmaster
Version 3.5

Under the following conditions the last
few labels won't be printed by the
PMLABEL program:

- if record extraction is selected
- if labels are being printed more than

one across
- if the number of labels that should be

printed is not exactly divisible by the
number of labels printed across.

For example, if labels are being printed
four across and eleven records meet the
extraction criteria, PMLABL should
print two rows of four label and then
one row of three labels. However, the
final row of three labels won't be
printed.

The remedy is to either print all labels
one across; or to rerun PMLABL and
print just the last few labels one across.

OOPS!
On page 31 of the March issue (Volume
II, Number 10), an incorrect address
was given for Matthew Von-Maszew-
ski. The right address is Matthew Von-
Maszewski, Staley Computer Associ-
ates, POB 9158, College Station, TX
77840.

On page 37 of the April issue, in the
listing presented by Bob Kowitt, a line
is missing:

60 GOSUB 560 start byte search

In addition, this routine does not work
for BASIC-80 with the Apple.

Univair Series 9000 Medical and
Dental Management Systems
Version 2.0

Office files for the clinic or doctor have
been changed so that interest or late
charge may be set up by the operator,
name and address lines can hold thirty
characters, second address lines can be
used, and department cost accounting

Lifelines/The Software Magazine, May 198252

Ufeboat A. -

—--***’'—*******

AutborVNa - " " "

AS AN AUTHOR
MIS MIGHT BE TOUR

MOST IMPORTANT LINE.
If you've tried to market your own program,

you've probably run into a virtual brick wall of
problems. Problems that require time, energy, funds,
personnel and expertise to solve.

Lifeboat Associates invites you to bring your
problems to us. That way you can do what you do
best: create quality software. And we can do what we
do best: sell it.

As an international publisher of quality
computer software with a strong relationship among
business, professional, programming and personal
computer users, as well as micro- and minicomputer
OEM's, Lifeboat Associates has sold and fully
supported more software programs by more authors
for more machines to more users in more countries
than anyone else.

And we do a lot more than sell. Lifeboat
also provides:
• Full after sales support • A multitude of media
formats • OEM sales • Extensive promotional cam-
paigns through Lifeboat's Software Desk Reference™,
specially designed OEM private label catalogs, foreign
catalogs, brochures, flyers and direct mail • Adver-
tising • Advertising preparation • Marketing services
throughout a wide network of affiliates, dealers and dis-
tributors • Translation facilities into foreign languages
• Seminars • Typesetting services • And lots more

So if you've expended your time and genius in
writing a great program, bring it to Lifeboat. We'll
expend our time and genius in publishing it..

Write for a copy of the Lifeboat Author Guide.

Lifeboat Associates
World's foremost software source

1651Third Avenue, New York, New York 10028

Copyright ©1981, by Lifeboat Associates Software Desk Reference is a trademark of Lifeboat Associates.

Lifelines/The Software Magazine, Volume II, Number 12 53

VERSION LIST April 6, 1982

The listed software is available from the authors, computer stores
distributors, and publishers. Except in the cases noted, all software
requires CP/M-80, SB-80, or compatible operating systems.

S Standard Version
P Processor
MR Memory Required

New Products and new versions are listed in boldface.
Product s P MR
ACCESS-80 1.0 8080/Z80 54K
Accounts Payable/ Cybernetics Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX
Accounts Payable/MC 1.0 8080/Z80 56K For CP/M 2.2
Accounts Payable/ Structured Sys 1.3B 8080 52K w/It Works run time pkg.
Accounts Payable/Peachtree 07-13-80 48K Needs BASIC-80 4.51
Accounting Plus 8080/Z80 64K
Accounts Receivable/Cybernetics Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX
Accounts Receivable/MC 1.0 8080/Z80 56K CP/M 2.2
Accounts Receivable /Peachtree 07-13-80 8080 48K Needs BASIC-80 4.51
Accounts Receivable/Structured Sys 1.4C 8080 56K w/It Works run time pkg.
Address Management System 1.0 8080 Requires 2 drives
ALGOL 60 4.8C 8080 24K
ANALYST 2.0 8080 52K Needs CBASIC2,QSORT/ULTRASORT
APL/V80 3.2 Z80 48K Needs APL terminal
Apartment Management (Cornwall) 1.0 Z80 Needs CBASIC2
ASM/XITAN 3.11 Z80
Automated Patient History 1.2 8080 48K
BASIC Compiler 5.3 8080 48K
BASIC-80 Interpreter 5.21 8080 40K w/Vers. 4.51,5.21
BASIC Utility Disk 2.0 8080 48K
BaZic II 03/03
Benchmark Word Processor 2.2 Give Name & Model #'s of the video terminal)
Benchmark Mail List 1.1 Give Name & Model #'s of the video terminal)
BOSS Financial Accounting System 1.08 8080 48K Needs 2/3- drives w/min 200k each, & 132-col. printer
BOSS Demo 1.08 8080 48K
BSTAM Communication System 4.5 8080 32K
BDS C Compiler 1.46 8080 32K w/'C' book
Whitesmiths' C Compiler 2.1 8080 60K
BSTMS 1.2 8080 24K
BUG / uBUG Debuggers 3.20 Z80 24K
CBASIC2 Compiler 2.08 8080 32K w/CRUN(2,204P, & 238)
CBS Applications Builder 1.33 8080 48K Needs no support language
CIS COBOL Compiler 4.4,1 8080 48K
CIS COBOL Compact 3.46 8080 32K
FORMS 1 CIS COBOL Form Generator 1.06 8080
FORMS 2 CIS COBOL Form Generator 1.1,6a 8080
Interface for Mits Q70 Printer CP/M 1.41 or 2.XX
COBOL-80 Compiler 4.6 8080 48K
COBOL-80 PLUS M/SORT 4.01 8080 48K
CONDOR II 2.06 8080 48K
CREAM (Real Estate Acct'ng) 2.3 8080 64K CBASIC needed
Crosstalk 1.4 Z80
DATASTAR Information Manager 1.101 8080 48K
Datebook-II 2.04 8080 48K Needs 80x24 terminal, N/A for CDOS, CP/M 1.4, MP/M
dBASE-II 2.3B 8080 48K
dBASE-II Demo 2.3B 8080 48K
Dental Management System 8000 8.7A 8080 48K Needs CBASIC
Dental Management System 9000 2.0 8080 48K Needs CBASIC
DESPOOL Print Spooler 2.1A 8080
DISILOG Z80 Disassembler 4.0 Z80 Zilog mnemonics
DISTEL Z80/8080 Disassembler 4.0 8080/Z80 Intel mnemonics,TDL extensions
Documate/Plus 1.4 8080 36K
Documate/Plus/Demo 1.5
EDIT Text Editor 2.06 Z80
EDIT-80 Text Editor 2.02 8080
Emulator-86 1.0 An Emulator for CP/M-86
FABS-I 2.7 8080 32K
FABS II 4.15 8080/Z80 48K
FILETRAN 1.20 32K 1-way TRS-80 Mod I,TRSDOS to Mod I CP/M
FILETRAN 1.4 32K Needs TRSDOS. 2-way TRS-80 Mod I,TRSDOS

& Mod I CP/M
FILETRAN 1.5 32K 1-way TRS-80 Mod II,TRSDOS to Mod II CP/M
Financial Modeling System 2.0 48K
Floating Point FORTH 2 8080/Z80 28K
Floating Point FORTH 3 8080/Z80 28K
FORTRAN-80 Compiler 3.44 8080 36K
FPL 56K Vers. 2.6 8080 56K
FPL 48K Vers. 2.6 8080 48K
General Ledger/Cybernetics Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX
General Ledger/MC 1.0 8080/Z80 56K Needs CP/M 2.2 or MP/M

Lifelines/The Software Magazine, May 198254

VERSION LIST
Product s P MR
General Ledger/Peachtree 07-13-80 8080 48K Needs BASIC-80 4.51
General Ledger/ Structured Sys 1.4C 8080 52K w/It Works Package
General Ledger II/CPaids 1.1 8080 48K Needs BASIC-80 4.51
GLECTOR Accounting System 2.02 8080 56K Use w/CBASIC2,Selector III
GLECTOR IV Accounting System 1.0 8080 Needs Selector IV
HDBS 1.05A + 52K
IBM/CPM 1.1 8080
Insurance Agency System 9000 1.08 8080 Needs CBASIC
Integrated Acctg Sys/Gen'l Ledger 8080 48K Needed for 3 pkgs, below
Integrated Acctg Sys /Accts Pyble 8080 48K
Integrated Acctg Sys/Accts Rcvble 8080 48K
Integrated Acctg Sys/Payroll 8080 48K
Interchange Z80 32K
Inventory /MicroConsultants 5.3 8080/Z80 56K Needs CP/M 2.2
Inventory / Peachtree 07-13-80 8080 48K Needs BASIC-80 4.51
Inventory/ Structured Sys 1.0C 8080 52K w/It Works Package
Job Cost Control System/MC 1.0 8080/Z80 56K Requires CP/M 2.2
JRT Pascal System 1.4 8080 56K
LETTERIGHT Text Editor 1.1B 8080 52K
LINKER Z80
MAC 2.0A 8080 20K
MACRO-80 Macro Assembler Package 3.43 8080/Z80
MAG/basel (LMS) 2.0.1 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
MAG/base2 (IMS) 2.0.1 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
MAG/base3 (ADS) 2.0.1 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
Magic Typewriter 3 Z80 48K
Magic Wand 1.11 8080 32K
MAG/sam3 4.2 8080 32K
MAG/sam4 1.1 8080 32K Needs CBASIC
MAGSORT-C 1.0 For CBASIC
MAGSORT-M 1.0 For MBASIC
MAGSORT-M 1.0 For Compilers — BASCOM, FORTRAN-80, PL/I-80
MAILING ADDRESS Mail List System 07-13-80 8080 48K
Mail-Merge 3.0 8080
Master Tax 1.0-80 8080 48K
Matchmaker 8080 32K
MDBS 1.05A + 48K
MDBS-DRS 1.02 + 52K
MDBS-QRS 1.0 + 52K
MDBS-RTL 1.0 + 52K
MDBS-PKG + 52K w/all above MDBS products
Medical Management System 8000 8.7a 8080 Needs CBASIC
Medical Management System 9000 2.0 8080 Needs CBASIC
Microcosm Z80 CP/M 2.X or MP/M
Microspell 4.3 8080 48K Needs 150K/drive
Microspell Demo 1.0 For Dealers Only
Microstat 2.08 8080 48K Needs BASIC-80, 5.03 or later, or CBASIC
Microstat for Apple 2.0
Mince 2.6 8080 48K
Mince Demo 2.6 8080 48K
Mini-Warehouse Mngmt. Sys. 5.5 8080 48K Needs CBASIC
Money Maestro 8080/Z80 48K CP/M 1.4 or 2.2
MP/M-I 1.0
MP/M-II 2.0 8080 48K Needs MP/M
MSORT 1.01 8080 48K
Mu LISP-80/ Mu STAR Compiler 2.12 8080
Mu SIMP / Mu MATH Package 2.12 8080 muMATH 80
NAD Mail List System 3.0D 8080 48K
Nevada COBOL 2.1 8080 32K
Order Entry w/Inventory/Cybernetics Z80 Needs RM/COBOL
Panel 2.2 44K Also for MP/M
PAS-3 Medical 1.78 8080 56K Needs 132-col. printer & CBASIC
PAS-3 Dental 1.64 8080 56K Needs 132-col. printer & CBASIC
PASM Assembler 1.02 Z80
Pascal /M 4.02 8080 56K
PASCAL /MT Compiler 3.2 8080 32K
PASCAL/MT+ w/SPP 5.5 8080 52K Needs 165K/drive
PASCAL /Z Compiler 4.0 Z80 56K
Payroll/Cybernetics, Inc. Z80 Needs RM/COBOL
Payroll /Peachtree 07-13-81 8080 48K Needs BASIC-80 4.51
Payroll /Structured Sys 1.0E 8080 60K w/It Works run time pkg.
PEARL SD 3.01 8080 56K w/CBASIC2, Ultrasort II
PLAN80 Financial Package (Z80/8080) 2.2A 8080 56K Z80/8080
PLAN80 Demo 1.1
PL/I-80 1.3 8080 48K
PLINK I Linking Loader 3.28 Z80 24K

(continued next page)
Lifelines/The Software Magazine, Volume II, Number 12 55

VERSION LIST
Product s P MR

PLINK-II Linking Loader 1.14 Z80 48K
PMATE 3.02 8080 32K
POSTMASTER Mail List System 3.5 8080 48K
Professional Time Acctg 3.11a 8080 48K Needs CBASIC2
Programmer's Apprentice 8080/Z80 56K Needs BASIC-80
Property Management Program (AMC) 4.2 Z80 48K Needs CBASIC 2.07 + , CP/M-80 2.0 +
Property Management System 07-13-80 8080 Needs BASIC-80 4.51
Property Manager 1.0 8080 48K Needs CBASIC
PSORT 1.3 8080
QSORT Sort Program 2.0 8080 48K
Real Estate Acquisition Programs 2.1 8080 56K Needs CBASIC
Remote 3.01 Z80
Residential Prop. Mngemt. Sys. 1.0 Z80 48K
RM /COBOL Compiler w/Cybernetics CP/M 2, OASIS, UNIX
RAID 5.0.2 8080 28K
RAID w/FPP 5.0.2 8080 40K
RECLAIM Disk Verification Program 2.1 8080 16K
SBASIC 5.4 8080 48K
Scribble 1.3 8080
SELECTOR-III-C2 Data Manager 3.24 8080 48K Needs CBASIC
SELECTOR-IV 2.17 8080 52K Needs CBASIC
Shortax 1.2 Z80 48K TRSDOS,MDOS too, needs BASIC-80 5.0
SID Symbolic Debugger 1.4 8080 N/A-Superbr'n
Spellguard 2.0 8080/Z80 32K Needs Word Processing Program
Standard Tax 1.0 8080 48K Needs BASIC-80 4.51
STATPAK 1.2 8080 Needs BASIC-80 4.2 or above
STIFF UPPER LISP 2.8 8080 48K
STRING BIT FORTRAN Routines 1.02 8080
STRING /80 bit FORTRAN Routines 1.22 8080
STRING /80 bit Source 1.22 8080
SUPER SORT I Sort Package 1.5 8080 Max. record = 4096 bytes
SELECT 8080/Z80 40K
T/MAKER II 2.5.3 8080 48K Avail, for CDOS
T/MAKER II DEMO 2.4 8080 48K
TEX Text Formatter 2.1 8080 36K
TEXTWRITER-III 3.6 8080 32K
TINY C Interpreter 800102C 8080
TINY C-II Compiler 800201 8080
TRS-80 Customization Disk 1.3C 8080
ULTRASORT II 4.1C 8080 48K
Lifeboat Unlock 1.3 8080 Use w/BASIC-80 5.2
VISAM 2.3p 8080 48K
Wiremaster 3.12 Z80 Needs 180K/drive
Wordindex 3.0 8080 48K Needs WordStar
Wordmaster 1.07A 8080 40K
WordStar 3.0 8080 48K
WordStar w/MailMerge 3.0 8080 48K
WordStar Customization Notes 3.0 8080
XASM-05 Cross Assembler 1.05 8080 48K
XASM-09 Cross Assembler 1.07 8080 48K
XASM-51 Cross Assembler 1.09 8080 48K
XASM-F8 Cross Assembler 1.04 8080 48K
XASM-400 Cross Assembler 1.03 8080 48K
XASM-18 Cross Assembler 1.41 8080
XASM-48 Cross Assembler 1.62 8080
XASM-65 Cross Assembler 1.97 8080
XASM-68 Cross Assembler 2.00 8080
XYBASIC Extended Interpreter 2.11 8080
XYBASIC Extended Disk Interpreter 2.11 8080 With EDIT features
XYBASIC Extended Compiler 2.0 8080 Requires the XYBASIC w/EDIT features to create SOURCE
XYBASIC Extended Romable 2.1 8080
XYBASIC Integer Interpreter 1.7 8080
XYBASIC Integer Compiler 2.0 8080
XYBASIC Integer Romable 1.7 8080
ZAP-80 1.4 8080 Needs 50K /drive
Z80 Development Package 3.5 Z80 N/A-Magnolia,Superbr'n,mod.CP/M
ZDM/ZDMZ Debugger 1.2/2.0 Z80 For N'Star,Apple,IBM 8"
ZDT Z80 Debugger 1.41 1.41 Z80 N/A-Superbr'n,mod .CP /M
ZSID Z80 Debugger 1.4A Z80 N/A-Superbr'n,mod.CP/M

+ These products are available in Z80 or 8080, in the following host language:
BASCOM, COBOL-80, FORTRAN-80, PASCAL/M, PASCAL/Z, CIS-
COBOL, CBASIC, PL/I-80, BASIC-80 4.51, and BASIC-80 5.xx.

Lifelines/The Software Magazine, May 198256

BOY IS THIS
COSTING YOU.

records and entire databases
with a few keystrokes, with
accuracy to 10 places.

Change your data or your
entire database structure
without re-entering all
your data.

And after you’re finished,
you can protect all that
elegant code with our run-
time compiler.

Expand your clientbase
with dBASE II.

It's really quite basic: time is
money.

And BASIC takes a lot more
time and costs a lot more
money than it should every
time you write a new business
software package.

Especially when you
could speed things up with
dBASE II.

dBASE II is a complete
applications
development package.

With dBASE II, you’ll write programs a lot
faster and a lot more efficiently. You’ll be able to
write more programs for more clients. Even take
on the smaller jobs that were out of the economic
question before. Those nice little foot-in-the-data-
base assignments that grow into bigger and better
bottom lines.

Users tell us they’ve cut the amount of code they
write by up to 80% with dBASE II.

Because dBASE II is the high performance relational
database management system for micros.

Database and file handling operations are done
automatically, so you don’t get involved with sets, lists,
pointers, or even opening and closing of files.

Instead, you write your code in concepts.
And solve your customers' problems faster and for

a lot less than with BASIC (or FORTRAN, COBOL
or PL/I).

dBASE II uses English-like commands.
dBASE II uses a structured language to put you in

full control of your data handling operations.
It has screen handling facilities for setting up input

and output forms.
It has a built-in query facility, including multi-

key and sub -field searches, so you can DISPLAY
some or all of the data for any conditions you want
to apply.

You can UPDATE, MODIFY and REPLACE entire
databases or individual characters.

CREATE new databases in minutes, or JOIN data-
bases that already exist.

APPEND new data almost instantly, whether the
file has 10 records or tens of thousands.

SORT the data on as many keys as you want. Or
INDEX it instead, then FIND whatever you’re looking
for in seconds, even using floppies.

Organize months worth of data in minutes with the
built-in REPORT. Or control every row and column
on your CRT and your printer, to format input and
output exactly the way you want it.

You can do automatic calculations on fields,

Your competitors know of this offer.
The price of dBASE II is $700 but you can try it

free for 30 days.
Call for our Dealer Plan and OEM run-time package

prices, then take us up on our money-back guarantee.
Send us your check and we’ll send you a copy of
dBASE II that you can exercise on your CP/M®
system any way you want for 30 days.

Then send dBASE II back and we’ll return all of your
money, no questions asked.

During that 30 days, you can find out exactly how
much dBASE II can save you,
and how much more it lets
you do.

But it’s only fair to warn
you: business programmers
don’t go back to BASIC’s.

Ashton-Tate, 9929 Jefferson,
Los Angeles, CA 90230.
(213) 204-5570.

®CP/M is a registered trademark of Digital Research.

Ashton-late
©Ashton-Tate 1981

Also available from Lifeboat Associates.

k'

...

At N
ew

 York, N
.Y.

..

1651 Third A
venue / N

ew
 Y

ork, N
.Y. 10028

■ •
\

‘

■

■
5

*
■

1

